@LabWindows/CVl

LabWindows/CVI
Programmer
Reference Manual

‘7NAT|0NA|.)
’ |NSTRUMENTS February 1998 Edition

e Software is the Instrument” Part Number 320685D-01

Internet Support

E-mail: support@natinst.com

FTP Siteftp.natinst.com

Web Addresshttp://www.natinst.com

Bulletin Board Support

BBS United States: 512 794 5422
BBS United Kingdom: 01635 551422
BBS France: 01 48 65 15 59

Fax-on-Demand Support
512 418 1111

Telephone Support (USA)
Tel: 512 795 8248
Fax: 512 794 5678

International Offices

Australia 03 9879 5166, Austria 0662 45 79 90 0, Belgium 02 757 00 20, Brazil 011 288 3336,

Canada (Ontario) 905 785 0085, Canada (Québec) 514 694 8521, Denmark 45 76 26 00, Finland 09 725 725 11,
France 01 48 14 24 24, Germany 089 741 31 30, Hong Kong 2645 3186, Israel 03 6120092, Italy 02 413091,
Japan 03 5472 2970, Korea 02 596 7456, Mexico 5 520 2635, Netherlands 0348 433466, Norway 32 84 84 00,
Singapore 2265886, Spain 91 640 0085, Sweden 08 730 49 70, Switzerland 056 200 51 51, Taiwan 02 377 1200,
United Kingdom 01635 523545

National Instruments Corporate Headquarters
6504 Bridge Point Parkway Austin, Texas 78730-5039 USA Tel: 512 794 0100

© Copyright 1994, 1998 National Instruments Corporation. All rights reserved.

Important Information

Warranty

Copyright

Trademarks

The media on which you receive National Instruments software are warranted not to fail to execute programming
instructions, due to defects in materials and workmanship, for a period of 90 days from date of shipment, as evidenced
by receipts or other documentation. National Instruments will, at its option, repair or replace software media that do not
execute programming instructions if National Instruments receives notice of such defects during the warranty period.
National Instruments does not warrant that the operation of the software shall be uninterrupted or error free.

A Return Material Authorization (RMA) number must be obtained from the factory and clearly marked on the outside
of the package before any equipment will be accepted for warranty work. National Instruments will pay the shipping costs
of returning to the owner parts which are covered by warranty.

National Instruments believes that the information in this manual is accurate. The document has been carefully reviewed
for technical accuracy. In the event that technical or typographical errors exist, National Instruments reserves the right to
make changes to subsequent editions of this document without prior notice to holders of this edition. The reader should
consult National Instruments if errors are suspected. In no event shall National Instruments be liable for any damages
arising out of or related to this document or the information contained in it.

EXCEPT AS SPECIFIEDHEREIN, NATIONAL |NSTRUMENTSMAKES NO WARRANTIES, EXPRESSOR IMPLIED, AND SPECIFICALLY DISCLAIMS

ANY WARRANTY OF MERCHANTABILITY OR FITNESSFORA PARTICULAR PURPOSE CUSTOMER’ S RIGHT TO RECOVERDAMAGES CAUSED

BY FAULT OR NEGLIGENCE ON THE PART OF NATIONAL INSTRUMENTSSHALL BE LIMITED TO THE AMOUNT THERETOFOREPAID BY THE
CUSTOMER NATIONAL INSTRUMENTSWILL NOT BE LIABLE FOR DAMAGES RESULTING FROM LOSS OF DATA, PROFITS USEOF PRODUCTS

OR INCIDENTAL OR CONSEQUENTIAL DAMAGES, EVEN IF ADVISED OF THE POSSIBILITY THEREOFR This limitation of the liability of

National Instruments will apply regardless of the form of action, whether in contract or tort, including negligence.

Any action against National Instruments must be brought within one year after the cause of action accrues. National
Instruments shall not be liable for any delay in performance due to causes beyond its reasonable control. The warranty
provided herein does not cover damages, defects, malfunctions, or service failures caused by owner’s failure to follow
the National Instruments installation, operation, or maintenance instructions; owner’s modification of the product;
owner’s abuse, misuse, or negligent acts; and power failure or surges, fire, flood, accident, actions of third parties, or
other events outside reasonable control.

Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic or mechanical,
including photocopying, recording, storing in an information retrieval system, or translating, in whole or in part, without
the prior written consent of National Instruments Corporation.

CVI™, National Instrument, the National Instruments logeatinst.com ™, and The Software is the Instrum&ate
trademarks of National Instruments Corporation.

Product and company names listed are trademarks or trade names of their respective companies.

WARNING REGARDING MEDICAL AND CLINICAL USE OF NATIONAL INSTRUMENTS PRODUCTS

National Instruments products are not designed with components and testing intended to ensure a level of reliability
suitable for use in treatment and diagnosis of humans. Applications of National Instruments products involving medical
or clinical treatment can create a potential for accidental injury caused by product failure, or by errors on the part of the
user or application designer. Any use or application of National Instruments products for or involving medical or clinical
treatment must be performed by properly trained and qualified medical personnel, and all traditional medical safeguards,
equipment, and procedures that are appropriate in the particular situation to prevent serious injury or death should always
continue to be used when National Instruments products are being used. National Instruments products are NOT intended
to be a substitute for any form of established process, procedure, or equipment used to monitor or safeguard human health
and safety in medical or clinical treatment.

Contents

About This Manual
Organization of ThisS Manual...........cccuuuiiiiiirii e Xiii
Conventions Used in ThiS ManUAL............cccoiiiiiiiiiiiic e Xiv
Related DOCUMENTALIONeviiiiiieiiee e XV
Customer COMMUNICALION...........cuviiiiiieiiee e Xvi
Chapter 1
LabWindows/CVI Compiler
OVBIVIEW ...ttt ettt ettt e ettt e skt e e e e ekt e e et e e e e e b bt e e e eanbn e e e e e mems 1-1..
LabWindows/CVI Compiler SPECIfiCSuuuiiiiiiiiiee it 1-1
(070] 10T o 1 T=T g I 0311 £ J TR 1-1
1070] 121 o 11T R @] o] (o] o =TS U TSP 1-2
COMPIIET DEFINES.... et 1-2
C Language NON-CONFOMEANCEuuiiiiiiiaea et e e eea e e e 1-2
C LaNQUAQE EXIENSIONScoiiiiiiiiiiiiiitee et e ettt e e e e e e ettt e et e e e e e e aaeaneberreeeaeeaens 1-2
Keywords That Are Not ANSI C Standardccooviiieeiiiiiieeeniiiiiee e 1-2
Calling Conventions (Windows 95/NT ONlY)......ccccviiiiiiiiieiniiiee e 1-2
Import and EXport QUANTIEIS.coiiiiiiiiiie e 1-3
C++ COMMENT MATKETSciiiiiiiiiie ittt 1-4
DUPlICAtE TYPEUETS. ...ttt e 1-4
Structure Packing Pragma (Windows 3.1 and Windows 95/NT Only)............. 1-4
Program Entry Points (Windows 95/NT ONly)c.c.ueeeiiiiiiiiiiniieee e 1-5
C LIDIary ISSUEScoiiiiiiie ettt et s e e e 1-5........
Using the Low-Level I/O FUNCLIONS.........cuiiiiiiiiiiee e 1-5
C Data Types and 32-Bit COMPIIEr ISSUES.......c.oiiiiiiiiiiiiieeeiie e 1-6
Data TYPES. ... 1-6
Converting 16-Bit Source Code to 32-Bit Source Codeccoevviiirrrrneeennnnn. 1-6
DEBUGTING LEVEIS ...ttt e sab e e e rire e e e 1-8
USEI PrOTECTION ...ttt e e e e e e e e e 1-8........
Array Indexing and Pointer Protection Erfors.........c.cocueeveiiniieiieniiieeee e 1-8
Pointer Arithmetic (Non-Fatal)...........cccooviiieiiii e, 1-8
Pointer Assignment (Non-Fatal) ..., 1-9
Pointer Dereference Errors (Fatal).........ccoooveeeiiiiiiiiiniiiee e 1-9
Pointer Comparison (Non-Fatal)...........cccovieeriiniiiiee e 1-10
Pointer Subtraction (Non-Fatal)...........ccccooiiieiiiiiii e 1-10
Pointer Casting (Non-Fatal) ... 1-10
Dynamic Memory ProteCtion EITOrScccoiiiiiieaiiiiiee et 1-11
Memory Deallocation (Non-Fatal)..........ccocueeeeiiiiiiiiiiiic e 1-11
Memory Corruption (Fatal)............cccuveeeriiiiiienie e 1-11

© National Instruments Corporation v LabWindows/CVI Programmer Reference Manual

Contents

General ProteCtion ErTOrS..........cooiiiiiiiiiiiic et 1-11
Library Prote@Ction EITOISuiiiiiieie ittt ee e e eeeae e 1-11
Disabling User ProteCtioNooooiiiiiiiieeee e 1-12
Disabling Protection Errors at RUN-TIMecccceieiiiiiiiiiiiieeeeeeenn, 1-12
Disabling Library Errors at RUN-TiMeoooiiiiiiiiiiiiieeiie 1-12
Disabling Protection for Individual Pointer..............cocccciiiiiinnnn. 1-12
Disabling Library Protection Errors for FUnctions............c.cccceeeeennee. 1-13
Details Of USEr ProteCHONeviiiiiiiiie ittt 1-14
POINTEr CASHING ..eeiiiviiiee et 1-14
DYNAMIC MEMOTY ..cceiiiiiiiie ettt 1-15
Avoid Unassigned Dynamic Allocation in
FUuNnction Parameters.........c..eeeeiiiiiieiiiiieeee e 1-15
Library FUNCHONScooiiiiiiiii et 1-16
UNHONS .ttt ettt e e e e e e e et e e e e nnnee s 1-16
STACK SIZE ... 1-16...
INCIUAE PANS ... e 1-17.....
Include Path Search PreCedenceooooiiiiiiiiiiiiiei e 1-17
Chapter 2
Using Loadable Compiled Modules
About Loadable Compiled MOAUIES ..o 2-1
Advantages and Disadvantages of Using Loadable Compiled Modules
IN LADWINAOWS/CVI ...t 2-2
Using a Loadable Compiled Module as an Instrument Driver
Program File ...t e e e e e e e e e 2-2
Using a Loadable Compiled Module as a User Library...........cccoccocieiiiiinnnnns 2-3
Using a Loadable Compiled Module in the Project List...........ccccuveeeiiieennnnnn. 2-3
Using a Loadable Compiled Module as an External Modulecccooeeee. 2-4
Notification of Changes in RUN Stateccccciviiiieiiiiiie e 2-4
EXAMPIE L. 2-5
EXAQMPIE 2. 2-6
Using Run State Change Callbacks in @ DLL...........cooviiiiiiiniiiiiee e, 2-6
Compiled Modules that Contain Asynchronous Callbacksccccceeeeee. 2-7
Chapter 3
Windows 95/NT Compiler/Linker Issues
Loading 32-Bit DLLS under WIindows 95/NTcoiiiiiieiiceree e 3-1
DLLs for Instrument Drivers and User Libraries..........cccccovvvreiieeennen e 3-2
Using The LoadExternalModule FUNCLIONcccvvvveiieeiiiiiiieieee e 3-2
Link Errors when Using DLL Import Libraries.......cccccceeevevveiiieeeieeee e 3-2
DLL Path (.pth) Files NOt SUPPOIEd.........ccceeeiiiiiiiiiiiiieie e e 3-2
16-Bit DLLS NOt SUPPOIEd........ceieiiiiiiiii e e ee e e e e r e e e e ee e e e e e 3-2

LabWindows/CVI Programmer Reference Manual vi © National Instruments Corporation

Contents

Run State Change Callbacks in DLLS.......oooiiiiiiiiieiee e 3-2
D] 1Y = U T PP PPTPPPPPPP PP 3-3
Releasing Resources when a DLL Unloadsoooooiiiiiiiiiiiiiieeeiiiiiieeeeee 3-3
Generating an Import LiDrary ... 3-4
Default Unloading/Reloading POIICYcooviiiiiiiiiiiiiiiieee e 3-4
Compatibility with External COmMPIlersccoiiio i 3-4
Choosing Your Compatible COMPIIEr........c.eviiiiiiiiiieiii e 3-5
Object Files, Library Files, and DLL Import Libraries..........ccccovovveeriiiieeeennnns 3-5
Compatibility ISSUES IN DLLS........uviiiiiiiiiiiie e 3-5
SErUCTUIE PACKINGeviiiiiiiiie ettt 3-6
Bt FIEIUS ..o 3-6
Returning Floats and DOUDIES............cuviiiiiiiiiiiciiee e 3-7
REtUrNIiNG STIUCLUIESouviiiiiiiiiiie et 3-7
ENUM SIZES..ciiiiiieiiie e 3-7
LONG DOUDIES ..ottt 3-7
Differences between LabWindows/CVI and the External Compilers............... 3-7
External Compiler Versions SUPPOed............coouueiieiiiiiieeiiiiiiee e e e 3-8
Required Preprocessor DefinitionS..........occeveiiiiiiiiiiii e 3-8
Multithreading and the LabWindows/CVI LIbraries..........ccoccveeeiiiiiiiiiiiieee e 3-8
Using LabWindows/CVI Libraries in External Compilers..........ccocveiiiiiiiie e 3-9
Include Files for the ANSI C Library and the LabWindows/CVI
LIDIATES .. 3-10
Standard INPUL/OULPUL WINAOWcoiuiiiiiiiiiiiie et 3-10
Resolving Callback References from .UIR Filescccociiiiiiiieiiiiiiee, 3-10
Linking to Callback Functions Not Exported from a DLL................. 3-11
Resolving References from Modules Loaded at Run-Time.........ccccccceeeeeviinnns 3-12
Resolving References to the LabWindows/CVI
RUN-TIME ENQGINEoiiiiiiiiiiiiiiiiee ettt 3-12
Resolving References to Symbols Not in Run-Time Engine.............. 3-12
Resolving Run-Time Module References to Symbols
Not Exported from @ DLL.........eoeeiiiiiiieiiieeecc e 3-13
Run State Change Callbacks Are Not Available in External Compilers........... 3-13
Calling INitCVIRTE and CIOSECVIRTEccciiiiiiiiiiiiieiee e 3-14
Watcom Stack Based Calling Conventionccccoovuvieeeiiiieeeeniiiece e 3-15
Using Object and Library Files in External Compilersccccccoviiiiiiniine e 3-15
Default Library DIir€CHVES.uiiii ittt 3-15
MiCrosoft VisSUal CICH+ ..ot 3-16
2To T4 - Ta o O L O RS 3-16
WaALCOM C/CH ittt e 3-16
SYMANTEC C/CHF ittt e e e e e e e ee e e e e e e nnnees 3-16
Borland Static versus Dynamic C Libraries.........cccocooeiiiiiiiiiniic e 3-17
Borland Incremental LINKEooiiiiiiiiiie s 3-17

© National Instruments Corporation vii LabWindows/CVI Programmer Reference Manual

Contents

BOrland CH+ BUIIAE ..ot 3-17
Watcom PUll-in REFEIENCESooiiiiiiiie e 3-17
Creating Object and Library Files in External Compilers for Use
IN LADWINAOWS/CV ...ttt et e 3-18
MICrOSOft VISUAI C/CHiiiiiiiiiiiie it 3-18
BOMANA C/CHt ..o 3-18
WALCOM C/CH oottt et es 3-19
SYMANTEC C/CHF ittt e e e e 3-19
Creating Executables in LabWINAOWS/CVIcccueiiiiiiiiiiieiiieee e 3-20
Creating DLLS in LAbWINAOWS/CVIouiiiiiiiiiiiiiiece et 3-20
Customizing an IMpPort LIDFary..........oocuueeeoiiiiieeiee e 3-20
Preparing Source Code for Use in @ DLLccoviiiiiiiiiiiiieiiic e 3-21
Calling Convention for Exported FUNCHONS..........cccoocveeeeiniiiee e, 3-21
Exporting DLL Functions and Variables...........cccccociiiiiniiiiiiiininnnn. 3-22
Include File Method...........cuviiiiiiiiiie e 3-22
Export Qualifier Methodccooiiiiiiiiiie e 3-22
Marking Imported Symbols in Include File Distributed
WIEH DLL Lottt 3-23
RecOMMENALIONScooiiiiiiiieiiiec e 3-24
Automatic Inclusion of Type Library Resource for Visual Basic 3-24
Creating Static Libraries in LabWINAOWS/CVuuviiiiiiiiiiiiiiie e 3-25
Creating Object Files in LAabWINAOWS/CVIcoocuiiiiiiiiiiiiie e 3-26
Calling Windows SDK Functions in LabWIindows/CVI.............ccccoiiiiiiieiiniiiiiieen 3-26
Windows SDK INCIUAE FileS.......ooiiiiiiiiiiee e 3-26
Using Windows SDK Functions for User Interface Capabilities 3-27
Using Windows SDK Functions to Create Multiple Threads...............ccceeeene 3-27
Automatic Loading of SDK Import Libraries..........ccccevviiie e 3-27
Setting Up Include Paths for LabWindows/CVI, ANSI C, and SDK Libraries.............. 3-28
Compiling in LabWindows/CVI for Linking in LabWindows/CVI................. 3-28
Compiling in LabWindows/CVI for Linking in an External Compiler............. 3-28
Compiling in an External Compiler for Linking in an External Compiler 3-28
Compiling in an External Compiler for Linking in LabWindows/CVI............. 3-29
Handling Hardware Interrupts under Windows 95/NTccccciiiiiiiee e 3-29
Chapter 4
Windows 3.1 Compiler/Linker Issues
Using Modules Compiled by LabWindows/CVIc..uuuiiiiiiiiiiiiiiiiiieeeeee e 4-1
Using 32-Bit Watcom Compiled Modules under Windows 3.1..........ccccvieeeiniiiniiiinnnen. 4-1
Using 32-Bit Borland or Symantec Compiled Modules under Windows 3.1.................. 4-2
16-Bit WINAOWS DLLSceiiiiiiiiiee ettt ettt e e e e neeas 4-3
Helpful LabwWindows/CVI Options for Working with DLLS...........cccccceeeenn. 4-4
DLL Rules and RESIICHONScoiitiiiiiiiiiiiee ettt 4-4

LabWindows/CVI Programmer Reference Manual viii © National Instruments Corporation

Contents

DLL GIUE COUR ...ttt ettt 4-7
DLLs That Can Use Glue Code Generated at Load Time................... 4-8
DLLs That Cannot Use Glue Code Generated at Load Time............. 4-8
Loading a DLL That Cannot Use Glue Code Generated
At LOAd TIME oo 4-8
Rules for the DLL Include File Used to
Generate GlUE SOUMCEoocuvieieeiiiiiie e 4-9
If the DLL Requires a Support Module outside the DLL.....4-9
If You Pass Arrays Bigger Than 64 K to the DLL............... 4-9
If the DLL Retains a Buffer after the Function Returns
(@an Asynchronous Operation)ccceeevrcerreeeeniieeeesnnnnen. 4-11
If the DLL Calls Directly Back into 32-Bit Code 4-12
If the DLL Returns POINEISeveviiiiiiieiiiieee e 4-15
If a DLL Receives a Pointer that Points to Other
POINEEIS ..o 4-18
DLL Exports Functions by Ordinal Value Only 4-20
Recognizing Windows Messages Passed from a DLL.........cccccceveeiiiiiiiiinnnnen. 4-21
Creating 16-bit DLLs with Microsoft Visual C++ 1.5.......cccccciniiiiiiniiieeeee 4-21
Creating 16-bit DLLs with Borland CH+cooiiiiiiiiiiieeiee e 4-22
DLL Search PreCeaENCEccooiuiiiiiiiiiii et 4-23
Chapter 5
UNIX Compiler/Linker Issues
Calling Sun C Library FUNCLONSuuiiiiiiiieaaaaiaiiiie ettt 5-1
Restrictions on Calling Sun C Library FUNCLIONS...........ooiiiiiiiiiiiiieeeeeiee 5-1
Using Shared Libraries in LabWINdOWS/CVI........cooiiiiiiiiiiieeeieeeeee e 5-2
(0L T To e (o] o T=] o VPR 5-2
The LabWindows/CVI Run-Time Engine as a Shared Library..........cccccccceiieeniniiiinnnnee. 5-2
Creating Executables that Use the LabWindows/CVI Librariesc.cccccoviivienninnnnn. 5-3
Compatible External COMPIIErSooiiiiiiiieeee e 5-3
Static and Shared Versions of the ANSI C and Other Sun Libraries................. 5-3
Non-ANSI Behavior of Sun Solaris 1 ANSI C Libraryccccccveeiiiiiiiennnn 5-4
LabWindows/CVI Implements printf and scanf..........ccccocoiiiiiiiieniiiiee e 5-4
Main Function Must Call INItCVIRTE..........ccoiuiiiiiiiiieeeiiiee e 5-4
Run State Change Callbacks Are Not Available in Executables 5-5
Using Externally Compiled MOGUIESc..eoeiiiiiiiiiiicee e 5-6
Restrictions on Externally Compiled Modules............coccovveiiiiiiiiiiniiieieeieee. 5-6
Compiling Modules With External Compilers..........ccocceeiiiiieeeniiiieee e 5-6
Locking Process Segments into Memory Using PIOCK()ccvvveveriiiiieieniiiiiee e 5-7
UNIX Asynchronous Signal Handlingcooiuviiiiiiiiic e 5-7

© National Instruments Corporation ix LabWindows/CVI Programmer Reference Manual

Contents

Solaris 1 ANSI C Library Implementation.............ccuuuvieiiiiiiiiniiiiieeee e 5-8
Replacement FUNCLIONSoiiiiiiaiieee e e e e e 5-9
Additional Functions Not Found in Sun Solaris 1 libC.........ccccceeeeiiiiiiiiiiiinen. 5-9
Incompatibilities among LabWindows/CVI, Sun Solaris, and ANSICccccveeeeeee. 5-10
Between LabWindows/CVI and ANSI C ... 5-10
Between LabWindows/CVI and Sun SolariS........ccuuveeiiiiiaeainiiiiiiieeee e 5-11
Chapter 6
Building Multiplatform Applications
Multiplatform Programming GUIdeliNeScc.uuviiiiiiiiiii e 6-1
[T o] = 1V £ U1 TR 6-1
Externally Compiled MOAUIES ..o 6-3
Multiplatform User Interface GUIAENINESooiiiiiiiiiiii e 6-3
Chapter 7
Creating and Distributing Standalone Executables and DLLs
Introduction to the RUN-TIME ENQINE..........ooiiiiiiiiiiiecree e 7-1
Distributing Standalone Executables under Windows...............coceecvvivieennenenn. 7-1
Minimum System Requirements for Windows 95/NT..............ccc...... 7-1
No Math Coprocessor Required for Windows 95/NT............cc.c..ee.e.. 7-2
Minimum System Requirements for Windows 3.1ccccuvvveeee. 7-2
Math Coprocessor Software Emulation for Windows 3.1.................. 7-2
Distributing Standalone Executables under UNIX........cccccoeeeeeeiiiiiiciinineeneeenn. 7-2
Distributing Standalone Executables under Solaris 2......................... 7-3
Distributing Standalone Executables under Solaris 1......................... 7-4
Minimum System Requirements for UNIX...........ccccovvveeeeee i, 7-5
Translating the Message File ... 7-5
Configuring the RUN-TIME ENQINE......ccciii i e e 7-5
Solaris 1 Patches Required for Running Standalone Executable...................... 7-5
Configuration Option DESCHPLIONSuuviiiiieiee e rre e e e e 7-6
CVirtX (WIindows 3.1 ONlY)cuviiiiiiieieeeee s e e 7-6
cvidir (WINdows ONIY)oocciiiiiiiie e 7-7
useDefaultTimer (WIindows ONlY)ccceveiiiiiiiiiiiiieeie e, 7-7
DSTRUIES. ...ttt ettt eeee e s sraeee e nnes 7-7
LN Q@ T 1T = 7-7
Necessary Files for Running Executable Programseeeiiiiiiiiiinniiniseeeeeeeeeeeeeee 7-8
Necessary Files for Using DLLs Created in Windows 95/NTcccccveeiiiiieeeeiiveieeeees 7-9
Location of Files on the Target Machine for Running Executables and DLLs............... 7-9
LabWindows/CVI Run-Time Engine under Windows 95/NTccccccunenen. 7-10
Run-Time Library DLLScccoviieieii e 7-10
Low-Level SUPPOIt DIVENccccooee e 7-10

LabWindows/CVI Programmer Reference Manual X © National Instruments Corporation

Contents

Message, Resource, and Font FileS..........ccoooiiiiieeee, 7-11
National Instruments Hardware 1/O Librariescccccooiiiiiiiiiennnnenn. 7-11
LabWindows/CVI Run-Time Engine under Windows 3.1ccccccceveieeennnnnne 7-11
LabWindows/CVI Run-Time Engine under Sun Solarisccccuveeiieeeeeeen. 7-12
Rules for Accessing UIR, Image, and Panel State Files on All Platforms........ 7-12
Rules for Using DLL Files under Windows 95/NTcccooiiiiiiieeiiiiiee e 7-13
Rules for Using DLL Files under Windows 3.1..........ccooviiiiiiiniiineeniiiee e 7-13
Rules for Loading Files Using LoadExternalModulec.cccoeeeiiiiiiiinnnnen. 7-14
Forcing Modules that External Modules Refer to
into Your Executable or DLLcoooiiiiiiiiiiccee e 7-15
Using LoadExternalModule on Files in the Project............cccccovvveeen. 7-15
Using LoadExternalModule on Library and Object Files
NOL N the ProJECTeeviiiiiiiii e 7-16
Using LoadExternalModule on DLL Files under
WINAOWS O5/NT ...ttt 7-17
Using LoadExternalModule on DLL and Path Files
UNAEr WINAOWS 3.1 ..ottt 7-17
Using LoadExternalModule on Source Files (.C)......ccevvvviieeerenninnnnn. 7-18
Rules for Accessing Other FileS ... 7-19
Error Checking in Your Standalone Executable or DLLccccceiiiiieeeenns 7-19
Chapter 8
Distributing Libraries and Function Panels
How to Distribute LIDraries ... 8-1
Adding Libraries to User's Library MenUccuueeeiiiiiiiiiiiieee e 8-1
Specifying Library DePeNAENCIES.cc.uuuuiiiiiiiieaei e e e e e e 8-2
Chapter 9
Checking for Errors in LabWindows/CVI
ErrOr ChECKING....cciiiieiiieie e 92.......
Status Reporting by LabWindows/CVI Libraries and Instrument Drivers...................... 9-3
User Interface LIBrary ... 9-3
Analysis/Advanced Analysis LIbrariesccccccccveveiiciiiiiiieee e e e 9-3
Easy 1/0O for DAQ Library.......uueccc oottt a e 9-4
Data ACQUISItION LIDraryueiviiieiii e 9-4
R I IR o] = UV 9-4
GPIB/GPIB 488.2 LIDIrarycoiiouiiiiiiieitiie s 9-4
RS-232 LIDIArY ...ee ettt 9-5
A I 7NN o] = Y/ SRR 9-5
LY I o = T PR 9-5
QLI N I o] = 2T 9-6
[T I o - YRR 9-6

© National Instruments Corporation Xi LabWindows/CVI Programmer Reference Manual

Contents

ActiveX Automation LIDFaryeeeueieiiiiiiiiieeee e 9-6
X Property LIDIAry ...t e e 9-6
Formatting and 1/O LIDraryooooo i 9-6
ULIIEY LIDFAIY ettt e e e ee e e e e e e 9-7
ANSI C LIDIAIY ettt e e e e e e e e e e e e e e e easaarenes 9-7
LabWindows/CVI INStrument DIIVEISccooiiiiiiiiiiiiiee et 9-7
Appendix A
Errors and Warnings
Appendix B
Customer Communication
Glossary
Figures
Figure 7-1. Files Necessary to Run a LabWindows/CVI Executable Program
0oN @ Target MacChingccooiiiiiieiiii e 7-8
Tables
Table 1-1. LabWindows/CVI Compiler LImMitScococuiiiiiiiiiiiieiiieeee e 1-1
Table 1-2. LabWindows/CVI Allowable Data TYPEeSueeeeiiieeeaiiiiiiiiiiieeeaea e 1-6
Table 1-3. Stack Size Ranges for LabWindows/CVI........cccoooiiiiiiiiiiiiiiieiieeeeeees 1-16
Table 7-1. LabWindows/CVI Run-Time Engine Filescccccccciiiiiiiiiiiiiieeeen. 7-10
Table 7-2. Windows NT Registry Entry Values for the Low-Level
SUPPOIT DIIVET ..ttt 7-11
Table 7-3. Pathnames and Targets Of LiNKSocuvviiiniiiieiiiiee e 7-12
Table A-1. EFTOr MESSAQES. .. ettt A-1

LabWindows/CVI Programmer Reference Manual Xii © National Instruments Corporation

About This Manual

The LabWindows/CVI Programmer Reference Mamaitains
information to help you develop programs in LabWindows/CVI. The
LabWindows/CVI Programmer Reference Marigahtended for use by
LabWindows users who have already completedbting Started with
LabWindows/CVtutorial. To use this manual effectively, you should be
familiar with Getting Started with LabWindows/CthgeLabWindows/CVI
User Manua] DOS, Windows, and the C programming language.

Organization of This Manual

TheLabWindows/CVI Programmer Reference Marigalrganized as
follows:

© National Instruments Corporation

Chapter 1L abWindows/CVI Compiledescribes LabWindows/CVI
compiler specifics, C language extensions, 32-bit compiler issues,
debugging levels, and user protection.

Chapter 2Using Loadable Compiled Moduledescribes the

advantages and disadvantages of using compiled code modules in your
application. It also describes the kinds of compiled modules available
in LabWindows/CVI and includes programming guidelines for

modules you generate with external compilers.

Chapter 3Windows 95/NT Compiler/Linker Issyeescribes the
different kinds of compiled modules available under
LabWindows/CVI for Windows 95/NT and includes programming
guidelines for modules you generate with external compilers.

Chapter 4Windows 3.1 Compiler/Linker Issyekescribes the
different kinds of compiled modules available under
LabWindows/CVI for Windows 3.1 and includes programming
guidelines for modules you generate with external compilers.

Chapter 5UNIX Compiler/Linker Issueslescribes the kinds of
compiled modules available under LabWindows/CVI for UNIX and
includes programming guidelines for modules you generate with
external compilers.

Chapter 6Building Multiplatform Applicationscontains guidelines
and caveats for writing platform-independent LabWindows/CVI
applications. LabWindows/CVI currently runs under Windows 3.1
and Windows 95/NT for the PC, and Solaris 1 and Solaris 2 for the
SPARCstation.

Xiii LabWindows/CVI Programmer Reference Manual

About This Manual

* Chapte 7, Creating and Distributig Standalone Executablesid
DLLs, descibes tow the LatWindows/CVI Runtime Engine, DLLs,
externallycompled modules, and othéites interactvith your
executabldfile. This chapter also describesanto perform error
checking in a standalomzecutable progran¥ou can create
executable progranfsom any project that runis the
LabWindows/CVI enwvironment.

« Chapte 8, Distributing Librariesand Function Panek, descibes how
to distribute libraries, add libraries to a u'sdribrar y menu, and
specify libray depeneéncies.

e Chapte 9, Checking for Errors in LabWindows/C\descibes
LabwWindows/CM erra checking and dw Labwindows/CVI repats
errors inLabWindows/CV|1 libraries and compiledxternal modules.

* Appendix A, Errors and Warnngs, contains an alphabetized lgst
compilerwarnings, compilerreors, link erors, DLL loadirg errors
and externalmodule loading errors generatedby LabWindows/CM.

¢ Appendix B, Customer @mmunicatbn, contains famsto hep you
gather the information necessary tophet sole your technical
problams andaform you can use to comment on étproduct
documentation.

« TheGlossarycontains an alphabetical listtermsused in thismanual
and a degiption of each.

* Thelndex contains aalphabetichlist of key terms ad topics usd in
this manual, including theage whee each one can lieund.

Conventions Used in This Manual

<>

»

The following cawentionsare used in this manual.

Angle trackets enclose the namieaokey on the leyboad—for example,
<Shift>.

A hyphen betweemmto or more ky namesenclosed in angle brackets
denotes hat you should simultaneously press th@amed keg—for
example, <Ctrl-Alt-Delete>.

The » symbol leads you thraugh nested meu items and dialg box options
to afinal action The sequereFile»PageSetup»Options» Substit ute
Fonts direcs you topull down the File menu, select #nPage Setup item,
selet Options, andfinally selectthe Substitute Forts optionsfrom the
last dialay box.

LabWindows/CVI Programmer Reference Manual Xiv © National Instruments Corporation

N

bold
bold italic

italic

monospace

monospace bold

monospace italic

paths

About This Manual

This icon to the left of bold italicized text denotes a note, which alerts you
to important information.

This icon to the left of bold italicized text denotes a caution, which advises
you of precautions to take to avoid injury, data loss, or a system crash.

Bold text denotes the names of menus, menu items, parameters, or dialog
box buttons.

Bold italic text denotes an activity objective, note, caution, or warning.

Italic text denotes variables, emphasis, a cross reference, or an introduction
to a key concept. This font also denotes text from which you supply the
appropriate word or value.

Text in this font denotes text or characters that you should literally enter
from the keyboard, sections of code, programming examples, and syntax
examples. This font is also used for the proper names of disk drives, paths,
directories, programs, functions, flenames and extensions, and for
statements and comments taken from programs.

Bold text in this font denotes the messages and responses that the computer
automatically prints to the screen.

Italic text in this font denotes that you must enter the appropriate words or
values in the place of these items.

Paths in this manual are denoted using backslashes (\) to separate drive
names, directories, folders, and files.

Related Documentation

You may find the following documentation helpful while programming in
LabWindows/CVI:

* Microsoft Developer Network GIMicrosoft Corporation,
Redmond WA

e Programmer’s Guide to Microsoft Windows, dicrosoft Press,
Redmond WA, 1995

» Harbison, Samuel P. and Guy L. Steele GrA Reference Manual
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1995

© National Instruments Corporation XV LabWindows/CVI Programmer Reference Manual

About This Manual

Customer Communication

National Instruments wants to receive your comments on our products and
manuals. We are interested in the applications you develop with our
products, and we want to help you if you have problems with them. To
make it easy for you to contact us, this manual contains comment and
technical support forms for you to complete. These forms are in

Appendix B,Customer Communicatipat the end of this manual.

LabWindows/CVI Programmer Reference Manual Xvi © National Instruments Corporation

LabWindows/CVI Compiler

This chapter describes LabWindows/CVI compiler specifics, C language extensions, 32-hit
compiler issues, debugging levels, and user protection.

Overview

The LabWindows/CVI compiler is a 32-bit ANSI C compiler. The kernel of the
LabWindows/CVI compiler is the Icc ANSI C compiler (© Copyright 1990, 1991, 1992, 1993
David R. Hanson). It is not an optimizing compiler, but instead focuses on debugging, user
protection, and platform independence. Because the compiler is an integral part of the
LabWindows/CVI environment and features a limited set of straightforward options, it is also
easy to use.

LabWindows/CVI Compiler Specifics

This section describes specific LabWindows/CVI compiler limits, options, defines, and
diversions from the ANSI C standard.

Compiler Limits
Table 1-1 shows the compiler limits for LabWindows/CVI.

Table 1-1. LabWindows/CVI Compiler Limits

Coding Attribute Limit
Maximum nesting oftinclude 32
Maximum nesting ofif , #ifdef 16
Maximum number of macro parameters 32
Maximum number of function parameters 64
Maximum nesting of compound blocks 32
Maximum size of array/struct types 2°

© National Instruments Corporation 1-1 LabWindows/CVI Programmer Reference Manual

Chapter 1 LabWindows/CVI Compiler

Compiler Options

You can set the LabWindows/CVI compiler options by selecptjons»Compiler Options
in the Project window. This command opens a dialog box that allows you to set
LabWindows/CVI compiler options. For a discussion of these options, refer@othpiler
Optionssection in Chapter Broject Windowof theLabWindows/CVI User Manual

Compiler Defines

The LabWindows/CVI compiler accepts compiler defines througiCtmapiler Defines
command in th®ptions menu of the Project window. For more information, refer to the
Compiler Definesection in Chapter roject Windowof theLabWindows/CVI User
Manual

C Language Non-Conformance

LabWindows/CVI for UNIX does not allow you to passtact as one of a series of
unspecified variable arguments. Because of thisarg (ap, type) is not legal in
LabWindows/CVI iftype is a struct type.

LabWindows/CVI accepts thgine preprocessor directive, but ignores it.

C Language Extensions

The LabWindows/CVI compiler has several extensions to the C language. The purpose is to
make the LabWindows/CVI compiler compatible with the commonly used C extensions in
external compilers under Windows 95/NT.

Keywords That Are Not ANSI C Standard

LabWindows/CVI for Windows 3.1 accepts the non-ANSI C keywpadsal , PASCAL and
_pascal , but ignores them.

Calling Conventions (Windows 95/NT Only)

You can use the following calling convention qualifiers in function declarations:

cdecl

_cdecl

__cdecl (recommended)
_stdcall

_ stdcall (recommended)

In Microsoft Visual C/C++, Borland C/C++, and Symantec C/C++, the calling convention
normally defaults to cdecl if you do not use a calling convention qualifier. You can,

LabWindows/CVI Programmer Reference Manual 1-2 © National Instruments Corporation

Chapter 1 LabWindows/CVI Compiler

however, set options to cause the calling convention to defaulstdrall . The behavior
is the same in LabWindows/CVI. You can set the default calling convention to eitdetl
or __stdcall using theCompiler Options command in th®ptions menu of the Project
window. When you create a new project, the default calling conventiordscl

In Watcom C/C++, the default calling convention is natdecl or__stdcall . You must

use the4s (80486 Stack-Based Calling) option when you compile a module in Watcom for
use in LabWindows/CVI. Refer to tlfi@ompatibility with External Compilersection in

Chapter 3Windows 95/NT Compiler/Linker Issud$he-4s option causes the stack-based
calling convention to be the default. In LabWindows/CVI under Watcom compatibility mode,
the default calling convention is always the stack-based convention. It cannot be changed. The
LabWindows/CVI compiler accepts thecdecl and__stdcall —conventions under

Watcom, except that floating point and structure return values do not work_inctlezl

calling convention. National Instruments recommends that you avoid usidecl with

Watcom.

In the__cdecl calling convention and the Watcom stack-based calling convention, the
calling function is responsible for cleaning up the stack. Functions can have a variable number
of arguments.

Inthe__stdcall calling convention, the called function is responsible for cleaning up the
stack. Functions with a variable number of arguments do not worlsidicall . If you use
the__stdcall qualifier on a function with a variable number of arguments,
LabWindows/CVI does not honor the qualifier. All compilers pass parameters and return
values in the same way forstdcall ~ functions, except for floating point and structure
return values.

National Instruments recommends thatdcall ~ calling convention for all functions
exported from a DLL, except functions with a variable number of arguments. Visual Basic
and other non-C Windows programs expect DLL functions to belcall

Import and Export Qualifiers
You can use the following qualifiers in variable and function declarations:

__declspec(dllimport)
__declspec(dllexport)
__import

__export

_import

_export

© National Instruments Corporation 1-3 LabWindows/CVI Programmer Reference Manual

Chapter 1 LabWindows/CVI Compiler

At this time, not all these qualifiers work in all external compilers. The LabWindows/CVI
cvidef.h include file defines the following macros, which are designed to work in each
external compiler.

DLLIMPORT

DLLEXPORT

An import qualifier informs the compiler that the symbol is defined in a DLL. Declarations
of variables imported from a DLL require import qualifiers, but function declarations do not.

An export qualifier is relevant only in a project for which the target type is Dynamic Link
Library. The qualifier can be on the declaration or definition of the symbol, or both. The
qualifier instructs the linker to include the symbol in the DLL import library.

C++ Comment Markers

You can use double slashes (//) to begin a comment. The comment continues until the end of
the line.

Duplicate Typedefs

The LabWindows/CVI compiler does not report an error on multiple definitions of the same
typedef identifier, as long as the definitions are identical.

Structure Packing Pragma (Windows 3.1 and Windows 95/NT Only)

Thepack pragma can be used within LabWindows/CVI to specify the maximum alignment
factor for elements within a structure. For example, assume the following structure definition:
struct t {

double d1;

char charVal;

short shortVal;

double d2;
h

If the maximum alignment is 1, the compiler can start the structure on any 1-byte boundary
and inserts no gaps between the structure elements.

If the maximum alignment is 8, the compiler must start the structure on an 8-byte boundary,
placeshortval on a 2-byte boundary, and platzon an 8-byte boundary.

LabWindows/CVI Programmer Reference Manual 1-4 © National Instruments Corporation

Chapter 1 LabWindows/CVI Compiler

You can set the maximum alignment as follows:

#pragma pack(4) /* sets maximum alignment to 4 bytes */
#pragma pack(8) /* sets maximum alignment to 8 bytes */
#pragma pack() /* resets to the default*/

The maximum alignment the compiler applies to a structure is based on {rexkast
pragma statement it sees before the definition of the structure.

Program Entry Points (Windows 95/NT Only)

Under Windows 95/NT, you can ugénMain instead ofnain as the entry-point function to
your program. You might want to do this if you plan to link your executable using an external
compiler. You must includeindows.h for the data types that normally appear in the
WinMain parameter list. The following is the prototype WaénMain with the Windows data
types reduced to intrinsic C types.

int __stdcall WinMain(void * hinstance, void * hPrevinstance,
char* IpszCmdLine int nCmdShow)

C Library Issues

This section discusses special considerations in LabWindows/CVI in the areas of low-level
I/0O functions and the UNIX C library.

Using the Low-Level I/0 Functions

Many functions in the UNIX libraries and the C compiler libraries for the PC are not ANSI C
Standard Library functions. In general, LabWindows/CVI implements the ANSI C Standard
Library. Under UNIX, you can call UNIX libraries for the non-ANSI C functions in
conjunction with LabwWindows/CVI.

The low-level I/O functionspen, close ,read , write ,Iseek , andeof are notin the
ANSI C Standard Library. Under UNIX, these functions are available in the UNIX C library.
Refer to Chapter 3)NIX Compiler/Linker Issug$or more information.

Under Windows, you can use these functions along seifhn andfdopen if you include
lowlvlio.h

© National Instruments Corporation 1-5 LabWindows/CVI Programmer Reference Manual

Chapter 1 LabWindows/CVI Compiler

C Data Types and 32-Bit Compiler Issues

This section introduces the LabWindows/CVI compiler data types and discusses converting
16-bit source code to 32-bit source code.

Data Types

Table 1-2 shows the LabWindows/CVI allowable data types.

Table 1-2. LabWindows/CVI Allowable Data Types

Type Size Minimum Maximum
char 8 -128 127
unsigned char 8 0 255
short 16 -32,768 32,767
unsigned short 16 0 65,535
int ; long int 32 > 21
unsigned int 32 0 2”-1
unsigned long 32 0 2”-1
float 32 —3.40282E+38 3.40282E+38
double ; long double 64 —-1.79769E+308| 1.79769E+308
pointers Yoid *) 32 N/A N/A
enum 8, 16, or 32 - 21

The size of an enumeration type depends on the value of its enumeration constant.
In LabWindows/CVI, characters as@ned , unless you explicitly declare thamsigned .
The typedloat anddouble conform to 4-byte and 8-byte IEEE standard formats.

Converting 16-Bit Source Code to 32-Bit Source Code

If you convert a LabWindows for DOS application to a LabWindows/CVI application, use
this section as a guide after you complete the steps in Chap@orizrting LabWindows
for DOS Applicationsof theGetting Started with LabWindows/Ciianual.

In general, if you make few assumptions about the sizes of data types, little difference exists

between a 16-bit compiler and a 32-bit compiler except for the larger capacity of integers and
the larger address space for arrays and pointers.

LabWindows/CVI Programmer Reference Manual 1-6 © National Instruments Corporation

Chapter 1 LabWindows/CVI Compiler

For example, the code

int Xx;

declares a 2-byte integer in a 16-bit compiler such as LabWindows for DOS. In contrast,

a 32-bit compiler such as LabWindows/CVI handles this code as a declaration of a 4-byte
integer. In most cases, this does not cause a problem and the conversion is transparent,
because functions that use 2-byte integers in LabWindows for DOS use 4-byte integers in
LabWindows/CVI. However, this conversion does cause a problem when a program performs
one of the following actions:

» Passes an array of 16-bit integers to a GPIB, VXI, or Data Acquisition (DAQ) function

If you use a 32-biint array to receive a set of 16-bit integers from a device,
LabWindows/CVI packs two 16-bit values into each element of the 32-bit array. Any
attempt to access the array on an element-by-element basis does not work. Declare the
array ashort instead, and make sure any type specifiers that refer to it hgeelthe
modifier when you pass them as an argument to a Formatting and I/O Library function.

e Uses arint variable in a way that requires it to be a 2-byte integer

For example, if you pass an argument by address to a function in the Formatting and
I/O Library, such as 8can source or &can/Fmt target, and it matche%ad[b2] or

%i[b2] specifier, it does not work correctly. Remove i modifier, or declare the
variable ashort .

Conversely, if you passshort argument by address and it matchealar %i specifier
without the[b2] maodifier, it does not work correctly. Add tfie?] modifier.

Note The default for%dis 2 bytes on a 16-bit compiler and 4 bytes on a 32-bit compiler.
In the same way, the default fant is 2 bytes on a 16-bit compiler, and 4 bytes on
a 32-bit compiler. This is why you do not have to make any modifications if the
specifier for a variable of typat is %dwithout thebn modifier.

All pointers are 32-bit offsets. LabWindows/CVI does not uséathepointers that have both

a segment selector and an offset, except in 16-bit Windows DLLs under Windows 3.1.
LabWindows/CVI for Windows 3.1 calls 16-bit DLLs through a special interface
LabWindows/CVI generates from the header file for the DLL. For more information, refer to
theUsing 32-Bit Watcom Compiled Modules under Window&8di16-Bit Windows DLLs
sections in Chapter #/indows 3.1 Compiler/Linker Issues

© National Instruments Corporation 1-7 LabWindows/CVI Programmer Reference Manual

Chapter 1

LabWindows/CVI Compiler

Debugging Levels

You can compile the source modules in your application to include debugging information. If
you do so, you can use breakpoints and view or modify variables and expressions while your
program is suspended. You set the debugging level by sel@gtians»Run Optionsin the

Project window. Refer to thHRun Optionssection in Chapter ®roject Windowof the
LabWindows/CVI User Manu#&br information on debugging levels.

User Protection

User protection detects invalid program behavior that LabWindows/CVI cannot otherwise
detect during compilation. LabWindows/CVI reports such invalid program behavior as user
protection errors. When you set the debugging level to Standard or Extended,
LabWindows/CVI maintains extra information for arrays, structures, and pointers, and uses
the information at run time to determine the validity of addresses.

Two groups of user protection errors exist based upon two charactesistiesty leveand
error categoryIn each case, the ANSI C standard states that programs with these errors have
undefined behavior. The two severity levels are as follows:

* Non-Fatalerrors include expressions that are likely to cause problems, but do not
directly affect program execution. Examples include bad pointer arithmetic, attempts to
free pointers more than once, and comparisons of pointers to different array objects. The
expression is invalid and its behavior is undefined, but execution can continue.

« Fatal errors include expressions that LabWindows/CVI cannot execute without causing
major problems, such as causing a general protection fault. For example, dereferencing
an invalid pointer value is a fatal error.

Error categories include pointer protection, dynamic memory protection, library protection,
and general protection errors. Each of these categories includes subgroups as described in the
following sections.

Array Indexing and Pointer Protection Errors

The pointer protection errors catch invalid operations with pointers and arrays. In this section,
these errors are grouped by the type of expression that causes the error or the type of invalid
pointer involved.

Pointer Arithmetic (Non-Fatal)

Pointer arithmetic expressions involve a pointer sub-expression and an integer
sub-expression. LabWindows/CVI generates an error when the pointer sub-expression is

LabWindows/CVI Programmer Reference Manual 1-8 © National Instruments Corporation

Chapter 1 LabWindows/CVI Compiler

invalid or when the arithmetic operation results in an invalid pointer expression. The
following user protection errors involve pointer arithmetic:

Pointer arithmetic involving uninitialized pointer
Pointer arithmetic involving null pointer

Out-of-bounds pointer arithmetic (calculation of an array address that results in a pointer
value either before the start, or past the end of the array)

Pointer arithmetic involving pointer to freed memory
Pointer arithmetic involving invalid pointer

Pointer arithmetic involving address of non-array object
Pointer arithmetic involving pointer to function

Array index too large

Negative array index

Pointer Assignment (Non-Fatal)

LabWindows/CVI generates pointer assignment errors when you assign invalid values to
pointer variables. These warnings can help determine when a particular pointer becomes
invalid. The following user protection errors involve pointer assignment:

Assignment of uninitialized pointer value

Assignment of out-of-bounds pointer expression (assignment of an address before the
start, or past the last element, of an array)

Assignment of pointer to freed memory
Assignment of invalid pointer expression

Pointer Dereference Errors (Fatal)

Dereferencing of invalid pointer values is a fatal error because it can cause a memory fault or
other serious problem. The following user protection errors involve pointer dereferencing:

Dereference of uninitialized pointer
Dereference of null pointer

Dereference of out-of-bounds pointer (dereference using a pointer value before the start,
or past the end, of an array)

Dereference of pointer to freed memory
Dereference of invalid pointer expression
Dereference of data pointer for use as a function
Dereference of function pointer for use as data

© National Instruments Corporation 1-9 LabWindows/CVI Programmer Reference Manual

Chapter 1 LabWindows/CVI Compiler

« Dereference of a pointer to arbyte type where less tharbytes exist in the object
« Dereference of unaligned pointer (UNIX only)

Pointer Comparison (Non-Fatal)

LabWindows/CVI generates pointer comparison errors for erroneous pointer comparison
expressions. The following user protection errors involve pointer comparison:

e Comparison involving uninitialized pointer

e Comparison involving null pointer

e Comparison involving invalid pointer

e Comparison of pointers to different objects

e Pointer comparison involving address of non-array object
e Comparison of pointers to freed memory

Pointer Subtraction (Non-Fatal)

LabWindows/CVI generates pointer subtraction errors for erroneous pointer subtraction
expressions. The following user protection errors involve pointer subtraction:

e Subtraction involving uninitialized pointer

e Subtraction involving null pointer

e Subtraction involving invalid pointer

e Subtraction of pointers to different objects

« Pointer subtraction involving address of non-array object
e Subtraction of pointers to freed memory

Pointer Casting (Non-Fatal)

LabWindows/CVI generates a pointer casting error when you cast a pointer expression to type
(AnyType *) and not enough space exists for an object of Ayp@ype at the location the
pointer expression specifies. This occurs only when casting a dynamically allocated object for
the first time, such as with the co@deuble *) malloc(1) . In this example,

LabWindows/CVI reports the following errdot enough space for casting

expression to 'pointer to double'

LabWindows/CVI Programmer Reference Manual 1-10 © National Instruments Corporation

Chapter 1 LabWindows/CVI Compiler

Dynamic Memory Protection Errors

Dynamic memory protection errors report illegal operations with dynamic memory and
corrupted dynamic memory during allocation and deallocation.

Memory Deallocation (Non-Fatal)

LabWindows/CVI generates memory deallocation errors when the pointer is not the result of
a memory allocation. The following user protection errors involve memory deallocation:

« Attempt to free uninitialized pointer

» Attempt to free pointer to freed memory

» Attempt to free invalid pointer expression

« Attempt to free pointer not allocated wittalloc or calloc

Memory Corruption (Fatal)

LabWindows/CVI generates memory corruption errors when a memory
allocation/deallocation detects corrupted memory. During each dynamic memory operation,
LabWindows/CVI verifies the integrity of the memory blocks it uses in the operation. When
you set the Debugging Level to Extended, LabWindows/CVI thoroughly checks all dynamic
memory on each memory operation. LabWindows/CVI generates the following error when it
discovers a problenDynamic memory is corrupt

General Protection Errors
LabWindows/CVI also checks for stack overflow and missing return values:
» Stack overflow (fatal)
* Missing return value (non-fatal)

The missing return value error means that a non-void function (one you do not declare with
void return type) returned, but did not returned a value.

Library Protection Errors

Library functions sometimes generate errors when they receive invalid arguments.
LabWindows/CVI error checking is sensitive to the requirements of each library function.
The following errors involve library protection:

e Null pointer argument to library function

« Uninitialized pointer argument to library function

» Passing a pointer to freed memory to a library function

e Array argument too small

» Passing by reference a scalar argument to a library function that expects an array

© National Instruments Corporation 1-11 LabWindows/CVI Programmer Reference Manual

Chapter 1

LabWindows/CVI Compiler

« Missing terminating null in string argument
« Passing a string to a library function that expects a character reference parameter

LabWindows/CV!I library functions return error codes in a variety of cases. If you enable the
Break on Library Errors option in tHeun Options command in th©ptions menu of the

Project window, LabWindows/CVI suspends execution after a library function returns one of
these errors. A message appears that displays the name of the function and either the return
value or a string that explains why the function failed.

Disabling User Protection

Occasionally, you might want to disable user protection to avoid run-time errors that do not
cause problems in your program.

Disabling Protection Errors at Run-Time

You can use th8etBreakOnProtectionErrors function in the Utility Library to
programmatically control whether LabWindows/CVI suspends execution when it encounters
a protection error. This function does not affect the Break on Library Errors feature.

Disabling Library Errors at Run-Time

The Break on Library Errors option in tRein Options command in th€ptions menu of

the Project window lets you choose whether LabWindows/CVI suspends execution when a
library function returns an error code. The option takes effect when you start executing the
project. You can override the initial setting in your program by using the
SetBreakOnLibraryErrors function in the Utility Library. Use of this function does not
affect the reporting of other types of library protection errors.

Disabling Protection for Individual Pointer

You can disable pointer checking for a particular pointer by casting it first to an arithmetic
type and then back to its original type, as shown in the following macro:

#define DISABLE_RUNTIME_CHECKING(ptr)((ptr) = (void *)

((unsigned)(ptr)))
{
char *charPointer;
/* run-time checking is performed for charPointer before this
line */
DISABLE_RUNTIME_CHECKING(charPointer);
* no run-time checking is performed for charPointer after this
line */
}

LabWindows/CVI Programmer Reference Manual 1-12 © National Instruments Corporation

Chapter 1 LabWindows/CVI Compiler

This macro could be useful in the following situation: LabWindows/CVI reports erroneous
run-time errors because you set a pointer to dynamic memory in a source module and you then
resize it in an object module. The following steps describe how this error occurs:

1. You declare a pointer in a source module you compile with debugging enabled. You then
assign to the pointer an address thaltoc orcalloc returns:

AnyType *ptr;
ptr = malloc(N);

2. You reallocate the pointer in an object module so that it points to the same location in
memory as before. This might occur if you call tbadloc function or free the pointer
and then reassign it to memory that you allocate mittoc :

ptr = realloc(ptr, M); /* M > N */
or

free(ptr);

ptr = malloc(M);

3. You use the same pointer in a source module you compile with debugging enabled. At
this point, LabWindows/CVI still expects the pointer to point to a block of memory of
the original sizgN) .
(ptr+(M-1)) / This generates a fatal run-time error, */
[* even though it is a legal expression. */

To prevent this error, use tb¢SABLE_RUNTIME_CHECKINGnacro to disable checking for
the pointer after you allocate memory for it in the source module:

ptr = malloc(N);
DISABLE_RUNTIME_CHECKING(ptr);

Disabling Library Protection Errors for Functions

You can disable or enable library protection errors by placing pragmas in the source code.
LabWindows/CVI ignores these pragmas when you compile without debugging information,
that is, if the debugging level idone For example, the following two pragmas enable and
disable library checking for all the function declarations that occur after the pragma within a
header or source file. The pragmas affect only the functions declared in the file in which the
pragmas occur. These pragmas do not affect nested include files.

#pragma EnableLibraryRuntimeChecking
#pragma DisableLibraryRuntimeChecking

The following pragmas enable and disable library checking for a particular function. You
must declare the function before the occurrence of the pragma.

#pragma EnableFunctionRuntimeChecking function
#pragma DisableFunctionRuntimeChecking function

© National Instruments Corporation 1-13 LabWindows/CVI Programmer Reference Manual

Chapter 1

LabWindows/CVI Compiler

These two pragmas enable and disable run-time checking for a particular library function
throughout the module in which they appear. You can use them to override the effects of the
EnableLibraryRuntimeChecking andDisableLibraryRuntimeChecking pragmas

for individual functions. If both of these pragmas occur in a module for the same function,
LabWindows/CVI uses only the last occurrence.

Note These pragmas affect all protection, including run-time checking of function

arguments, for all calls to a specific library function. To disable breaking on
errors for a particular call to a library function, use the Utility Library function
SetBreakOnLibraryErrors . To disable the run-time checking of argument
expressions for a particular call to a library function, use the Utility Library
function SetBreakOnProtectionErrors

Note You cannot use pragmas to disable protection for the functions in the

statically linked libraries including User Interface, RS-232, TCP, DDE,
Formatting and 1/O, Utility, X Property, and ANSI C libraries unless you place the
DisableLibraryRuntimeChecking pragma at the top of the library header file.

Details of User Protection

Pointer Casting

A cast expression consists of a left parenthesis, a type name, a right parenthesis, and an
operand expression. The cast causes the compiler to convert the operand value to the type that
appears within the parenthesis.

C programmers occasionally have to cast a pointer to one data type to a pointer to another data
type. Because LabWindows/CVI does not restructure the user protection information for each
cast expression, certain types of cast expressions implicitly disable run-time checking for the
pointer value. In particular, casting a pointer expression to the following types disables
run-time checking on the resulting value:

e Pointer to a pointeAnyType **) PointerExpression
* Pointer to a structurg@truct AnyStruct *) PointerExpression
e Pointer to an arraganyType (*)[]) PointerExpression
¢ Any non-pointer typgunsigned) PointerExpression ,
(inty PointerExpression , and so on

Note An exception exists. Casts that you apply implicitly or explicitly tothiel *

values you obtain fronmalloc or calloc do not disable user protection.

Casting a pointer to one arithmetic type to a pointer to a different one, s@ighas
(unsigned *) , (short*) , and so on, does not affect run-time checking on the resulting
pointer, nor does casting a pointer to a void poifvigd *)

LabWindows/CVI Programmer Reference Manual 1-14 © National Instruments Corporation

Chapter 1 LabWindows/CVI Compiler

Dynamic Memory

LabwWindows/CM provides run-time error chethg for pointers and arrays in dynamically
allocated memaot

You can use the ANSI C library functiomsalloc or calloc to allocaé dynamic memar.

These functions returrvoid * values that younust cast to some other type before the

memory can be useBuring rogramexecution, LakVindows/CVI uses thdirst such cast
on the returvalue of eachcall tothes functions to determine the type otthbjed that will

be stored in the dynamic mergoBubsequent casts tdfdrent types can disable akéng on
the dynamic datasexplained in thePointer Castingdiscussin in this section.

You can use thee alloc function to resize dynamically allocated memoT his function
increases or decreases flize of the object associated with the dyramémoy.
LabWindows/CWVI adjusts lhie userprotectian information acordingly.

Avoid Unassigned Dynamic Allocation in Function Parameters

The LatWindows/CVI run-time errar checking mechanism dynamigadlllocaes daaito

keep track 6 pointes thda you dynamically allocate in your program. When you no longer
use the pointerd.abwindows/CVI uses garbage collection to deallocate its corresponding
dynamic memay.

A caseexists wheethe garbage collectitfails to retrieve allthe memoy it allocated. This
occurs when yopass tle returnvalue of omfunctionto anothefunction thereturnvalue is
apointe to dynamically allocattmemay, and you do not assign #pointe to avariablein
the argumenéxpression. The fowing is anexample:

MyRunc (1, 2, mallo c(7));

This call passes the returalue frommal | oc to MyFunc but does noassign it to aariable.
If you make this call repatedly in your program withrun-time checking enabled you lose a
small amount of memgreach time.

Change the code as faNs to avoid this problem.

voi d *p;

MyRunc (1,2, p=m alloc(7));

The following code alsowvorks and usesbetta programming style.
voi d *p;

p = malloc(7);

MyRunc (1, 2, p);

© National Instruments Corporation 1-15 LabWindows/CVI Programmer Reference Manual

Chapter 1 LabWindows/CVI Compiler

Library Functions

The LabWindows/CVI library functions that take pointer arguments or that return pointers
incorporate run-time checking for those arguments and return values. However, you must be
careful when passing arguments to library functions thatVwsde parameters, such as
GetCtrlAttribute andGetCtrlval in the User Interface Library ameemcpyand

memset in the ANSI C library. If you usewid * cast when you pass an argument to a
function that expects a variably typed argument, you disable run-time checking for that
argument. Some examples follow:

{
int value;
GetCtrlVal(panel, ctrl, &value); /* CORRECT */
GetCtrlVal(panel, ctrl, (void *)&value);/* INCORRECT */
}
{
char *names[N], *namesCopy[N];
memcpy(namesCopy, hames, sizeof (names));/* CORRECT */
memcpy((void *)namesCopy, (void *)names, sizeof names);
/* INCORRECT */
}
Unions

LabWindows/CVI performs only minimal checks fation type variables. If a union
contains pointers, arrays, or structs, LabWindows/CVI does not maintain user protection
information for those objects.

Stack Size

Your program uses the stack for passing function parameters and storing automatic local
variables. You can set the maximum stack size by selectifgyitiens»Run Optionsin the
Project window. Table 1-3 shows the stack size ranges LabWindows/CVI supports.

Table 1-3. Stack Size Ranges for LabWindows/CVI

Platform Minimum Default Maximum
Windows 3.1 4 KB 40 KB 40 KB
Windows 95/NT 100 KB 250 KB 1 MB
Solaris 1 for Sun 100 KB 250 KB 5MB
Solaris 2 for Sun 100 KB 250 KB 5MB

LabWindows/CVI Programmer Reference Manual 1-16 © National Instruments Corporation

Chapter 1 LabWindows/CVI Compiler

Note For LabWindows/CVI for Windows 3.1, the actual stack size approaches 64 KB
when you set the Debugging level to None.

Include Paths

ThelInclude Pathscommand in th®©ptions menu of the Project window specifies the
directory search path for include files. The Include Paths dialog box has two lists, one for
include paths specific to the project, and one for paths not specific to the project.

When you install VXplug&play instrument drivers, the installation program places the
include files for the drivers in a specific V{ug&play include directory. LabWindows/CVI
also searches that directory for include files.

Include Path Search Precedence

LabWindows/CVI searches for include files in the following locations and in the
following order:

1. Projectlist

Project-specific include paths

Non-project-specific include paths

The paths listed in the Instrument Directories dialog box
The subdirectories under tbé\toolslib directory
Thecvilinstr directory

Thecvilinclude directory

Thecvilinclude\ansi directory

© © N o g~ D

The VXIplugé&play include directory
10. Thecvi\sdk\include directory (Windows 95/NT only)

© National Instruments Corporation 1-17 LabWindows/CVI Programmer Reference Manual

Using Loadable
Compiled Modules

This chapter describes the advantages and disadvantages of using compiled code modules in
your application. It also describes the kinds of compiled modules available in
LabWindows/CVI and includes programming guidelines for modules you generate with
external compilers.

Refer to Chapter 3)Vindows 95/NT Compiler/Linker Issyu&hapter 4Windows 3.1
Compiler/Linker Issueor Chapter S5LUNIX Compiler/Linker Issuedn this manual for more
information on platform-specific programming guidelines for modules that external
compilers generate.

About Loadable Compiled Modules

Several methods exist for using compiled modules in LabWindows/CVI. You can load
compiled modules directly into the LabWindows/CVI environment as instrument driver
programs or as user libraries, so they are accessible to any project. You can list compiled
modules in your project, so they are accessible only within that project. You can use compiled
modules dynamically in your program witbadExternalModule , RunExternalModule
andUnloadExternalModule . Any compiled module you use in LabWindows/CVI must be

in one of the following forms:

« A.obj fileonthe PC, or a file under UNIX, that contains one object module
e Alb fileonthe PC,ora file under UNIX, that contains one or more object modules
e A dl file that contains a Windows DLL (Windows only)

You can create any of these compiled modules in LabWindows/CVI under Windows 95/NT,
or using a compatible external compiler. Under Windows 3.1, LabWindows/CVI can create
only .obj files. Under UNIX, LabWindows/CVI can create ondy files.

© National Instruments Corporation 2-1 LabWindows/CVI Programmer Reference Manual

Chapter 2 Using Loadable Compiled Modules

Advantages and Disadvantages of Using Loadable Compiled Modules
in LabWindows/CVI

Usingcompiledmodulesin LabNindows/CVI has the folbwing adrantages:

e Conpiled modulesrunfaster han souce malules Compiled modules @ not cantain the
debuggingand use protection code Lalindows/CVI generates when it compiles
source modules. Compiled modulesi generate iexternd compilers can rufaste
because fooptimization.

e LabWindows/CVI recompiles th source modules in a project each time you open the
project. Also, f an instrument dver progran fil e is asourcemodule, Lalwindows/CVI
recompiles it each timyou loal the instrument dver. LabwWindows/CVI does not
recompile compild modules when you open aoject a load an instrument tlrer.

« In standaloe executdles,you candynamicallyload @mpiled modulesbut not sarce
modules.

e You can intall compiled moduledyut not source moduleBsjto the Library menu.

* You can povide libraiies fa other davelopers without iying them acaessto your souce
code.

Usingcompiledmodulesin LabNindows/CVI has the folbwing disadantages:

¢ You cannot daug compiled modules. Becausempiled moduleslo not contain ray
debugging information, you camot sé bre&points @ view variablevalues.

e Conpiled modules d not includerun-time eror chedking or use protection.

Using a Loadable Compiled Module as an Instrument Driver
Program File

An instrumentdriver is a sebf highdevel functions with graphical funicin panelso make
programming easielt encapsulées many bw-level operatons, such as data formattiagd
GPIB, RS-232, an¥ XI communication, intdntuitive, high-level functions An instrument
driver usually controls a phigal instrumentbut it also can be a sefare utlity. The Using
InstrumentDrivers andInstrument Meun sectons of Chapter 3, Project\Wndow, of the
LabWindows/CM User Manal descrite how to use instrurent drivers.

To develop and dbug aninstrument dwer, load its progranfile into LaBVindows/CVI as a
sourcdfile. After youfinish déouggingit, youcan compile the prografiteinto an objectile
or aWindows 95/NT DLL. The ext time you load the insiment diver, Labwindows/CVI
loadsthe compiled modulevhich loadsard runsfaster thathe souce module.

Refer to tle LabWindows/CV Instrument Driver Bvelopers Guidfor information a how
to create minstrument dwver.

LabWindows/CVI Programmer Reference Manual 2-2 © National Instruments Corporation

Chapter 2 Using Loadable Compiled Modules

If the instrument driver program file is a compiled module, it must adhere to the requirements
outlined for each operating system in Chaptet/Bydows 95/NT Compiler/Linker Issyes
Chapter 4Windows 3.1 Compiler/Linker Issyesd Chapter 3JNIX Compiler/Linker

Issuesof this manual.

Using a Loadable Compiled Module as a User Library

You can install your own libraries into thérary menu. A user library has the same form
as an instrument driver. You can load as a user library anything that you can load into the
Instrument menu, provided the program is in compiled form. Refer t&J#irg Instrument
Drivers and thdnstrument Mensections of Chapter Broject Windowof the
LabWindows/CVI User Manuér more information. The main difference between modules
you load as instrument drivers and those you load as user libraries is that you can unload
instrument drivers using thénload command in thénstrument menu, but you cannot
unload user libraries. You cannot edit and recompile user libraries while they are loaded.

Install user libraries by selecting thibrary Options command in th@roject Options
menu. The next time you run LabWindows/CVI, the libraries load automatically and appear
at the bottom of theibrary menu.

You can develop a user library module to provide support functions for instrument drivers or
any other modules in your project. By installing a module throughititary Options

command, you ensure that the library is always available in the LabWindows/CVI
development environment. If you do not want to develop function panels for the library, create
a.fp file without any classes or functions. In that case, LabWindows/CVI loads the library
at startup but does not include the library name in_theary menu.

User libraries must adhere to the requirements outlined for the target operating system.
Chapter 3Windows 95/NT Compiler/Linker Issyé&shapter 4Windows 3.1

Compiler/Linker Issuegnd Chapter 3)NIX Compiler/Linker Issugsf this manual, discuss
operating system requirements.

Using a Loadable Compiled Module in the Project List

You can include compiled modules directly in the project list.

Note To use a DLL in your project under Windows 95/NT, you must include the DLL
import library (lib) file in the project list rather than the DLL.

Even when you include a source module in the project list, you can instruct LabWindows/CVI
to create an object module on disk when it compiles the file instead of debuggable code in
memory. To do this, double click in the O column next to the source file in the Project window.

© National Instruments Corporation 2-3 LabWindows/CVI Programmer Reference Manual

Chapter 2

Using Loadable Compiled Modules

Compiled modules must adhere to the requirements outlined for the target operating
system. Chapter 3Vindows 95/NT Compiler/Linker Issy&hapter 4Windows 3.1
Compiler/Linker Issug@nd Chapter 8JNIX Compiler/Linker Issugsf this manual, discuss
operating system requirements.

Using a Loadable Compiled Module as an External Module

You can load a compiled module dynamically from your program. A module you load
dynamically is called aexternal moduleYou can load, execute, and unload this external
module programmatically usingadExternalModule , GetExternalModuleAddr , and
UnloadExternalModule . Refer to Chapter &/tility Library, of theLabWindows/CVI
Standard Libraries Reference Mandal more information on using these functions.

While you develop and debug the external module, you can list it in the project as a source
file. After you finish debugging the module, you can compile it into an object file or a
Windows 95/NT DLL. External modules must adhere to the requirements outlined for the
target operating system. ChaptekBndows 95/NT Compiler/Linker Issyé&hapter 4,

Windows 3.1 Compiler/Linker Issyemnd Chapter 3)JNIX Compiler/Linker Issue®f this
manual, discuss operating system requirements.

Notification of Changes in Run State

You might have to notify certain compiled modules whenever your program starts, suspends,
continues, or stops. For example, if a compiled module has asynchronous callbacks, you must
prevent the callbacks from executing when program execution suspends at a breakpoint.
LabWindows/CVI has a callback mechanism you can use to inform a compiled module of
changes in the program status.

To notify a compiled module of changes in the run state, add a function with the name
__RunStateChangeCallback to the compiled module. LabWindows/CVI automatically
installs the callback for you.

The run state change callback must be in a compiled file, not in a source file. More than one
compiled module can contain functions with this name, because LabWindows/CVI never
enters it into the global name space. The prototype for the callback is as follows:

void CVICALLBACK __RunStateChangeCallback(int action)

libsupp.h defines the actions in the following enumerated type:

enum {
kRunState_Start,
kRunState_Suspend,
kRunState_Resume,
kRunState_AbortingExecution,
kRunState_Stop,

LabWindows/CVI Programmer Reference Manual 2-4 © National Instruments Corporation

Chapter 2 Using Loadable Compiled Modules

kRunState_EnableCallbacks,
kRunState_DisableCallbacks

h

The following examples show typical program state changes.

Example 1

kRunState_Start
kRunState_EnableCallbacks
[* user program execution begins */

/* a breakpoint or run-time error occurs, or user presses the
Terminate Execution key combination */
kRunState_DisableCallbacks
kRunState_Suspend
[* program execution suspends; CVI environment resumes */

/* user requests the execution be resumed, through the "Continue",
"Step Over", etc., commands */
kRunState_Resume
kRunState_EnableCallbacks
/* user program execution resumes */

[* user program execution completes normally */
kRunState_DisableCallbacks
kRunState_Stop

© National Instruments Corporation 2-5 LabWindows/CVI Programmer Reference Manual

Chapter 2 Using Loadable Compiled Modules

Example 2

kRunState_Start
kRunState_EnableCallbacks
/* user program execution begins */

[* a breakpoint or run-time error occurs, or user presses the
Terminate Execution key combination */
kRunState_DisableCallbacks
kRunState_Suspend
[* program execution suspends; CVI environment resumes */

[* user selects the Terminate Execution command */
kRunState_DisableCallbacks /* even though callbacks already
disabled */
kRunState_AbortingExecution
/* long jump out of user program */
kRunState_DisableCallbacks /* even though callbacks already

disabled */
kRunState_Stop
Note A Resume natification does not always follow @uspend notification. A Stop
notification can follow aSuspend notification without an interveningResume
notification.
Note Run state change callbacks do not work if you link your program in an external

compiler. Also, external compilers report link errors if you have multiple run state
change callbacks.

Using Run State Change Callbacks in a DLL

You can include one or more run state change callbacks in a DLL. To do so, you must build
the DLL in the LabWindows/CVI development environment, and each run state change
callback must be in a separate object or static library file in the DLL project. If you include a
run state change callback in a DLL, or in an object or static library file that another user might
include in a DLL, take special care in two areas:

« Use caution when you call into other DLLs in responsekRuaState_Stop message.
When you use your DLL in a standalone executable, the DLL receives the
kRunState_Stop message when the executable terminates. The order in which

LabWindows/CVI Programmer Reference Manual 2-6 © National Instruments Corporation

Chapter 2 Using Loadable Compiled Modules

Windows 95/NT unloads DLLs at process termination is not well-defined. Therefore, the
DLL you call into might no longer be loaded. This can cause a general protection fault.

Nevertheless, when you use your DLL in a program in the LabWindows/CVI
development environment, it is often necessary to call into DLLs to release resources
after each run. To solve this dilemma, use conditional code to release resources only if
you are running in the LabWindows/CVI development environment. An example
follows.

#include <utility.h>

switch (runState)
{
case kRunState_Stop:
if (! InStandaloneExecutable())
{ /* call into other DLLs to release resources */ }
[* release resources, including unloading DLLs */

break;
}
It is always safe to call into the LabWindows/CVI Run-time Engine in a run state change
callback.

« If your DLL uses global variables that can become stale after each program execution in
the LabWindows/CVI development environment, re-initialize the variables in response
to thekRunState_Start ~ or kRunState_Stop message. For example, memory that
you allocate using LabWindows/CVI ANSI C functions suchnaldoc orcalloc is no
longer valid when you restart your program. If your DLL has global variables that point
to allocated memory, set those pointersiti.L in response to theRunState_Start
or kRunState_Stop message.

Compiled Modules that Contain Asynchronous Callbacks

A compiled module can call a source code function asynchronously. This can happen through
interrupts or signals. In Windows 95/NT, the compiled module can call the source code
function from a thread other than the main thread. The call takes place asynchronously with
respect to the normal execution of the source code in your program.

The execution and debugging system in the LabWindows/CVI development environment is
not prepared to handle this asynchronous execution. Consequently, the compiled module must
announce to LabWindows/CVI that it is calling asynchronously into source code. It does this
by callingEnterAsyncCallback before calling the function, and calling

ExitAsyncCallback after calling the functiorEnterAsyncCallback and

ExitAsyncCallback have one parameter, which is a pointer to a buffer of size
ASYNC_CALLBACK_ENV_SIZEYou must pass the same buffer igt@tAsyncCallback

that you passed intenterAsyncCallback because the buffer stores state information. The
definition of ASYNC_CALLBACK_ENV_SIZEand the prototypes for these two functions are

in libsupp.h.

© National Instruments Corporation 2-7 LabWindows/CVI Programmer Reference Manual

Windows 95/NT
Compiler/Linker Issues

This chapter describes the different kinds of compiled modules available under
LabWindows/CVI for Windows 95/NT and includes programming guidelines
for modules you generate with external compilers.

Under Windows 95/NT, the LabWindows/CVI compiler is compatible with four external
32-bit compilers: Microsoft Visual C/C++, Borland C/C++, Watcom C/C++, and
Symantec C/C++. This manual refers to the four compilers asth@atible external
compilers

In LabWindows/CVI under Windows 95/NT, you can do the following:
* Load 32-bit DLLs, through the standard import library mechanism
» Create 32-bit DLLs and DLL import libraries

e Create library files and object files

e Call the LabWindows/CVI libraries from executables or DLLs created with any of the
four compatible external compilers

» Create object files, library files, and DLL import libraries that the compatible external
compilers can use

» Load object files, library files, and DLL import libraries created with any of the four
compatible external compilers

» Call Windows Software Development Kit (SDK) functions

This chapter discusses these capabilities.

Loading 32-Bit DLLs under Windows 95/NT

Under Windows 95/NT, LabWindows/CVI can load 32-bit DLLs. LabWindows/CVI links to
DLLs through the standard 32-bit DLL import libraries that you generate when you create
32-bit DLLs with any of the compilers. Because LabWindows/CV!I links to DLLs in this way,
you cannot specify a DLL file directly in your project. You must specify the DLL import
library file instead.

© National Instruments Corporation 3-1 LabWindows/CVI Programmer Reference Manual

Chapter 3 Windows 95/NT Compiler/Linker Issues

DLLs for Instrument Drivers and User Libraries

Under Windows 95/NT, LabWindows/CVI does not directly associate DLLs with instrument
drivers or user libraries. However, LabWindows/CVI can associate instrument drivers and
user libraries with DLL import libraries. Each DLL must have a DLL import librdity ()

file. In general, if the program for an instrument driver or user library is in the form of a DLL,
you must place the DLL import library in the same directory as the function pfanéfi(e.

The DLL import library specifies the name of the DLL that LabWindows/CVI searches for

using the standard Windows DLL search algorithm.

LabWindows/CVI makes an exception to facilitate using MXg&play instrument driver
DLLs. When you install a VXilug&play instrument driver, the installation program
does not place the DLL import library in the same directory agphdile. If a .fp file

is in the VXIplug&play directory, LabWindows/CVI searches for an import library in
the VXIplug&play library directory before it looks for a program file in the directory of
the.fp file, unless you list the program file in the project.

Using The LoadExternalModule Function

When you use theoadExternalModule function to load a DLL at run time, you must
specify the pathname of the DLL import library, not the name of the DLL.

Link Errors when Using DLL Import Libraries

A DLL import library must not contain any references to symbols that the DLL does not
export. If it does, LabWindows/CVI reports a link error. If you load the DLL using
LoadExternalModule , theGetExternalModuleAddr function reports an undefined
references-5) error. You can solve this problem by using LabWindows/CVI to generate an
import library. Refer to th&enerating an Import Librargiscussion later in this section.

DLL Path (.pth) Files Not Supported

The DLL import library contains the filename of the DLL. LabWindows/CVI uses the
standard Windows DLL search algorithm to find the DLL. Thus, DLL path ()
files do not work under Windows 95/NT.

16-Bit DLLs Not Supported

LabWindows/CVI for Windows 95/NT does not load 16-bit DLLs. If you want to do this, you
must obtain a 32-to-16-bit thunking DLL and a 32-bit DLL import library.

Run State Change Callbacks in DLLs

You can include run state change callbacks in DLLs you build in LabWindows/CVI. When
running a program in LabWindows/CVI, a run state change callback receives natification
when the program starts, suspends, resumes, and stops. If you include a run state change

LabWindows/CVI Programmer Reference Manual 3-2 © National Instruments Corporation

Chapter 3 Windows 95/NT Compiler/Linker Issues

callback in a DLL, you must take special care. Refer tNihtdication of Changes in Run
Statesection in Chapter 2Jsing Loadable Compiled Modulesf this manual, for a detailed
discussion of run state change callbacks.

DiIMain

Each DLL can have alIMain function, except that the Borland compiler uses
DIIEntryPoint as the name. The operating system call®tiMzin function with various
messages. To generate the template faivain function, use thénsert Constructs
command in th&dit menu of a Source window.

Use caution when inserting code in #/ROCESS_ATTACBNdPROCESS_DETACt&ases. In
particular, avoid calling into other DLLs in these two cases. The order in which

Windows 95/NT initializes DLLs at startup and unloads them at process termination is not
well-defined. Thus, the DLLs you want to call might not be in memory whenDBithiain
receives th®ROCESS_ATTACHr PROCESS_DETACHessage.

It is always safe to call into the LabWindows/CVI Run-time Engine in a run state change
callback, as long as you do so before caldhgeCVIRTE .

Releasing Resources when a DLL Unloads

When a program terminates, the operating system disposes resources your DLL allocates. If
your DLL remains loaded throughout program execution, it does not need to dispose
resources explicitly when the system unloads it at program termination. However, if the
program unloads your DLL during program execution, it is a good idea for your DLL to
dispose of any resources it allocates. It can release resource®iivittie function in

response to theROCESS_DETAQHessage. The DLL can also release resources in a function
that it registers with the ANSI &exit function. The system calls the function you register
when the DLL receives ttRROCESS_DETACHessage.

If your DLL calls into the LabWindows/CVI Run-time Engine DLL, it can allocate resources
such as user interface panels. If a program unloads your DLL during execution, you might
want to dispose these resources by calling functions subik@sePanel in the
LabWindows/CVI Run-time Engine. On the other hand, as explained in the previous section,
it is generally unsafe to call into other DLLs in response tCH@CESS_DETACHKessage.

To solve this dilemma, you can use ©MRTEHasBeenDetached function in the
Utility Library. It is always safe to call theVIRTEHasBeenDetached function.
CVIRTEHasBeenDetached returns FALSE until the main Run-time Engine DLL,
cvirte.dll , receives th€ROCESS_DETACHessage. Consequently, if
CVIRTEHasBeenDetached returns FALSE, your DLL can safely call functions in
LabWindows/CVI Run-time Engine to release resources.

© National Instruments Corporation 3-3 LabWindows/CVI Programmer Reference Manual

Chapter 3 Windows 95/NT Compiler/Linker Issues

Note cvirte.dll contains the User Interface, Utility, Formatting and I/O, RS-232,
ANSI C, TCP, and DDE Libraries.

Generating an Import Library

If you do not have a DLL import library or if the one you have contains references the DLL
does not export, you can generate an import library in LabWindows/CVI. You must have an
include file that contains the declarations of all the functions and global variables you want to
access from the DLL. The calling conventions of the function declarations in the include file
must match the calling convention of the functions in the DLL. For example, if the DLL
exports functions using the stdcall calling convention, the function declarations in the
include file must contain the stdcall keyword. Load the include file into a Source

window, and select th@enerate DLL Import Library command in th®©ptions menu.

Default Unloading/Reloading Policy

Some fundamental differences exist in the way Windows 95/NT and Windows 3.1 handle a
DLL that multiple processes use.

Windows 95/NT creates a separate data space for each process that uses the DLL.
Windows 3.1 creates only one data space for all processes that use the DLL.

Windows 95/NT natifies a DLL each time a process loads or unloads it. Windows 3.1 does
not notify a DLL each time a process loads or unloads it. Windows 3.1 notifies the DLL only
when the first process loads it and the last process unloads it.

LabWindows/CVI for Windows 95/NT unloads DLLs, by default, after each execution of a
user program in the development environment. This behavior more accurately simulates
what happens when you execute a standalone executable, and it is more suitable for
Windows 95/NT DLLs that rely on load/unload notification on each execution of a program.
You can change the default behavior by turning off the Unload DLLs After Each Run option
in the Run Options dialog box of the Project window. National Instruments recommends,
however, that you leave the default behavior in effect.

Compatibility with External Compilers

LabWindows/CVI for Windows 95/NT can be compatible at the object code level with

any of the four compatible external compilers (Microsoft Visual C/C++, Borland C/C++,
Watcom C/C++, and Symantec C/C++). Because these compilers are not compatible with
each other at the object code level, LabWindows/CVI can be compatible with only one
external compiler at a time. This manual refers to the compiler with which your copy of
LabWindows/CVI is currently compatible as tharrent compatible compiler

LabWindows/CVI Programmer Reference Manual 3-4 © National Instruments Corporation

Chapter 3 Windows 95/NT Compiler/Linker Issues

Choosing Your Compatible Compiler

When installing LabWindows/CVI, you must choose your compatible compiler. If you want
to change your choice of compatible compiler later, you can run the installation program and
change to another compatible compiler.

You can see which compatible compiler is active in LabWindows/CVI by selecting the
Compiler Options command in th®©ptions menu of the Project window.

Object Files, Library Files, and DLL Import Libraries

If you create an object file, library file, or DLL import library in LabWindows/CVI, you can
use the file only in the current compatible compiler or in a copy of LabWindows/CVI

that you installed with the same compatibility choice. For detailed information on using
LabWindows/CVI-generated object and static library files in external compilers, refer to
theUsing LabWindows/CVI Libraries in External Compilsesction later in this chapter.

If you load an object file, library file, or DLL import library file in LabWindows/CVI,

you must have created the file in the current compatible compiler or in a copy of
LabWindows/CVI that you installed with the same compatibility choice. If you have

a DLL but you do not have a compatible DLL import library, LabWindows/CVI reports an
error when you attempt to link your project.

To create a compatible import library, you must have an include file that contains the
declarations of all the functions and global variables you want to access from the DLL.
Load the include file into a Source window, and selec@&eerate DLL Import Library
command in th©ptions menu.

Make sure the calling conventions of the function declarations in the include file match the
calling convention of the functions in the DLL. Whereas DLLs usually export functions with
the__stdcall calling convention, the stdcall keyword is sometimes missing from the
function declarations in the associated include files. If you generate an import library from an
include file that does not agree with the calling convention the DLL uses, you can successfully
build a project that contains the import library, but LabWindows/CVI usually reports a general
protection fault when you run the project.

Compatibility Issues in DLLs

In general, you can use a DLL without regard to the compiler you used to create it. Only the
DLL import library must be created for the current compatible compiler. Some cases exist,
however, in which you cannot call a DLL that you created using one compiler from an
executable or DLL that you created using another compiler. If you want to create DLLs that
you can use in different compilers, design the Application Programming Interface (API) for
your DLL to avoid such problems. The following are areas in which the DLLs that external
compilers create are not fully compatible.

© National Instruments Corporation 3-5 LabWindows/CVI Programmer Reference Manual

Chapter 3

Windows 95/NT Compiler/Linker Issues

Structure Packing
The compilers differ in their default maximum alignment of elements within structures.

If your DLL API uses structures, you can guarantee compatibility among the different
compilers by using thpack pragma to specify a specific maximum alignment factor. Place
this pragma in the DLL include file, before the definitions of the structures. You can choose
any alignment factor. After the structure definitions, reset the maximum alignment factor back
to the default, as in the following example:

#pragma pack (4) /* set maximum alignment to 4 */

typedef struct {
char a;
int b;
} MyStructl;

typdef struct {
char a;
double b;
} MyStruct2;

#pragma pack () /* reset max alignment to default */

LabWindows/CVI predefines the DEFALIGN macro to the default structure alignment of
the current compatible compiler.

Bit Fields

Borland C/C++ uses the smallest number of bytes necessary to hold the bit fields you specify
in a structure. The other compilers always use 4-byte elements. You can force compatibility

by adding a dummy bit field of the correct size to pad the set of contiguous bit fields so that

they fit exactly into a 4-byte element. Example:

typedef struct {

int a:1;

int b:1;

int c:1;

int dummy:29; /* pad to 32 bits */
} MyStruct;

LabWindows/CVI Programmer Reference Manual 3-6 © National Instruments Corporation

Chapter 3 Windows 95/NT Compiler/Linker Issues

Returning Floats and Doubles

The compilers returfioat anddouble scalar values using different mechanisms. This is
true of all calling conventions, including stdcall . The only solution for this problem is
to change your DLL API so that it uses output parameters instead of return vatiseskor
andfloat scalars.

Returning Structures

For functions you do not declare with thestdcall calling convention, the compilers
return structures using different mechanisms. For functions you declare wiittall |, the
compilers return structures in the same way, except for 8-byte structures. National
Instruments recommends that your DLL API use structure output parameters instead of
structure return values.

Enum Sizes

By default, Watcom uses the smallest integer size necessary to represent thenlargest
value: 1 byte, 2 bytes, or 4 bytes. The other compilers always use 4 bytes. Force compatibility
by using theei (Force Enums to Type Int) option with the Watcom compiler.

Long Doubles

In Borland C/C++longdouble values are 10 bytes. In the other compilers, they are 8 bytes.
In LabWindows/CVI, they are always 8 bytes. Avoid udongy double in your DLL API.

Differences between LabWindows/CVI and the External Compilers

LabWindows/CVI does not work with all the non-ANSI extensions each external compiler
provides. Also, in cases where ANSI does not specify the exact implementation,
LabWindows/CVI does not always agree with the external compilers. Most of these
differences are obscure and rarely encountered. The following are the most important
differences you might encounter:

e wchart_t is only one-byte in LabWindows/CVI.

e 64-bit integers do not exist in LabWindows/CVI.

e longdouble values are 10 bytes in Borland C/C++ but 8 bytes in LabWindows/CVI.
* You cannot use structured exception handling in LabwWindows/CVI.

* You cannot use the Watcom C/C++cdecl calling convention in LabWindows/CVI for
functions that returfioat ordouble scalar values or structures. In Watcongdecl!
is not the default calling convention.

e LabWindows/CVI does not defineMSC_VER _BORLANDC , WATCOMC, and
__SC__. The external compilers each define one of these macros. If you port code

© National Instruments Corporation 3-7 LabWindows/CVI Programmer Reference Manual

Chapter 3 Windows 95/NT Compiler/Linker Issues

originally developed under one of these external compilers to LabWindows/CVI, you
might have to manually define one of these macros.

External Compiler Versions Supported

The following versions of each external compiler work with LabWindows/CVI for
Windows 95/NT:

« Microsoft Visual C/C++, version 2.2 or higher
e Borland C/C++, version 4.51 or higher

¢ Watcom C/C++, version 10.5 or higher

e Symantec C/C++, version 7.2 or higher

Required Preprocessor Definitions

When you use an external compiler to compile source code that includes any of the
LabWindows/CVI include files, add the following to your preprocessor definitions:

_NI_mswin32_

Multithreading and the LabWindows/CVI Libraries

Although the LabWindows/CVI environment is not multithreaded, you can use
LabWindows/CVI Libraries in the following multithreaded contexts:

« When you call the LabWindows/CVI Libraries from a multithreaded executable you
create in LabWindows/CVI or in an external compiler.

¢ When you call the LabWindows/CVI Libraries from a DLL that a multithreaded
executable loads. You can create the DLL in LabWindows/CVI or in an external
compiler.

¢ When you call the LabWindows/CVI Libraries from an object or static library file that
you dynamically load in a multithreaded executable. You can create the object or library
file in LabWindows/CVI or in an external compiler.

All the LabWindows/CV!I libraries are multithreaded safe when used outside of the
LabWindows/CVI development environment.

For detailed information on how to use the LabWindows/CVI User Interface Library in a
multithreaded program, refer to ChapteP8gramming with the User Interface Libraig
theLabWindows/CVI User Interface Reference Manual

LabWindows/CVI Programmer Reference Manual 3-8 © National Instruments Corporation

Chapter 3 Windows 95/NT Compiler/Linker Issues

Using LabWindows/CVI Libraries in External Compilers

Under Windows 95/NT, you can use the LabWindows/CVI libraries in any of the four
compatible external compilers. You can create executables and DLLs that call the
LabWindows/CVI libraries. LabWindows/CVI ships with the run-time DLLs that contain all
the libraries. Executable files you create in LabWindows/CVI also use these DLLs. The

cvi\extlib directory contains DLL import libraries and a startup library, all compatible
with your external compiler. Never use tlie files in thecvi\bin directory in an external
compiler.

You must always include the following two libraries in your external compiler project:

cvisupp.lib /* startup library */
cvirt.lib /*import library to DLL containing:*/

I* User Interface Library */
/* Formatting and I/O Library */
/* RS-232 Library */
/* DDE Library */
I* TCP Library */
I* Utility Library */
You can add the following static library file froeai\extlib to your external compiler

project:

analysis.lib /* Analysis or Advanced Analysis Library */

You can add the following DLL import library files froovi\extlib to your external
compiler project:

gpib.lib /* GPIB/GPIB 488.2 Library */

dataacq.lib /* Data Acquisition Library — */

easyio.lib /* Easy I/O for DAQ Library */

visa.lib [* VISA Transition Library */
nivxi.lib [* VXI Library */
ivi.lib * VI Library */

cviauto.lib /* ActiveX Automation Library*/

If you use an instrument driver that makes references to both the GPIB and VXl libraries, you
can include botlgpib.lib andnivxi.lib to resolve the references to symbols in those
libraries. If you do not have access to one of these files, you can replace it with one of
following files:

gpibstub.obj /* stub GPIB functions */
vxistub.obj /* stub VXI functions */

© National Instruments Corporation 3-9 LabWindows/CVI Programmer Reference Manual

Chapter 3 Windows 95/NT Compiler/Linker Issues

If you use an external compiler that requiragiaMain entry point, the following optional
library allows you to define onlyain in your program.

cviwmain.lib /* contains a WinMain() function which */
[* calls main() */

Include Files for the ANSI C Library and the LabWindows/CVI Libraries

Thecvirt.lib import library contains symbols for all the LabWindows/CV!I libraries,
except the ANSI C standard library. When you create an executable or DLL in an external
compiler, you use the compiler's own ANSI C standard library. Because of this, you must use
the external compiler’s include files for the ANSI C library when compiling source files.
Although the include files for the other LabWindows/CVI libraries are ircthiaclude

directory, the LabWindows/CVI ANSI C include files are in th@include\ansi

directory. Thus, you can speciyi\include as an include path in your external compiler
while at the same time using the external compiler’s version of the ANSI C include files.

Note Use the external compiler's ANSI C include files only when you compile a source
file that you intend to link using the external compiler. If you intend to link the file
in LabWindows/CVI, use the LabWindows/CVI ANSI C include files. This is true
regardless of which compiler you use to compile the source file.

For more information, refer to th&etting Up Include Paths for LabWindows/CVI, ANSI C,
and SDK Librariessection later in this chapter.

Standard Input/Output Window

One effect of using the external compiler’s ANSI C standard library is thatitife and
scanf functions do not use the LabWindows/CVI Standard Input/Output window. If you
want to useprintf andscanf , you must create a console application, which is called a
character-mode executable in Watcom.

You can continue to use the LabWindows/CVI Standard Input/Output Window by calling the
FmtOut andScanin functions in the Formatting and 1/O library.

Resolving Callback References from .UIR Files

When you link your program in LabWindows/CVI, LabWindows/CVI keeps a table of the
non-static functions that are in your project. When your programlLceitf*anel or
LoadMenuBar , the LabWindows/CVI User Interface Library uses this table to find the
callback functions associated with the objects you load from the user interface resource
(.uir) file. This is true whether you run your program in the LabWindows/CVI development
environment or as a standalone executable.

LabWindows/CVI Programmer Reference Manual 3-10 © National Instruments Corporation

Chapter 3 Windows 95/NT Compiler/Linker Issues

When you link your program in an external compiler, the external compiler does not make
such a table available to the User Interface Library. To resolve callback references, you must
use LabWindows/CVI to generate an object file that contains the necessary table.

1. Create a LabWindows/CVI project that containsiire files your program uses, if you
do not already have one.

2. Select thé&xternal Compiler Support command in th®&uild menu of the Project
window. A dialog box appears.

3. Inthe UIR Callbacks Object File control, enter the pathname of the object file you want
to generate. When you click on tBeeate button, LabWindows/CVI generates the
object file with a table that contains the names of all the callback functions referenced in
all the.uir files in the project. When you modify and save any of thése files,
LabWindows/CVI regenerates the object file to reflect the changes.

4. Include this object file in the external compiler project you use to create the executable.

5. You must callnitCVIRTE at the beginning of younain or WinMain function. Refer
to theCalling InitCVIRTE and CloseCVIRT&ection later in this chapter.

Linking to Callback Functions Not Exported from a DLL

Normally, the User Interface Library searches for callback functions only in the table of
functions in the executable. When you load a panel or menu bar from a DLL, you might want
to link to non-static callback functions the DLL contains, but does not export. You can do this
by callingLoadPanelEx andLoadMenuBarEx . When you pass the DLL module handle to
LoadPanelEx andLoadMenuBarEx , the User Interface Library searches the table of

callback functions the DLL contains before searching the table that the executable contains.
Refer to Chapter 4)ser Interface Library Function Referenad theLabWindows/CVI User
Interface Reference Manufr detailed information obhoadPanelEx and

LoadMenuBarEXx .

If you create your DLL in LabWindows/CVI, LabWindows/CVI includes the table of
functions in the DLL automatically. If you create your DLL using an external compiler, you
must generate an object file that contains the necessary table as follows.

1. Create a LabWindows/CVI project that contains.tive files your DLL loads, if you
do not already have one.

2. Select th&xternal Compiler Support command in th®&uild menu of the Project
window. A dialog box appears.

3. Inthe UIR Callbacks Object File control, enter the pathname of the object file you want
to generate. When you click on t@eeate button, LabWindows/CVI generates the
object file with a table that contains the names of all the callback functions referenced in
all the.uir files in the project. When you modify and save any of thése files,
LabWindows/CVI regenerates the object file to reflect the changes.

© National Instruments Corporation 3-11 LabWindows/CVI Programmer Reference Manual

Chapter 3 Windows 95/NT Compiler/Linker Issues

4. Include this object file in the external compiler project you use to create the DLL.

5. You must callnitCVIRTE andCloseCVIRTE in yourDLLMain function. Refer to the
Calling InitCVIRTE and CloseCVIRT&ection later in this chapter.

Resolving References from Modules Loaded at Run-Time

Note This section does not apply unless you usadExternalModule to load object
or static library files.

Unlike DLLs, object and static library files can contain unresolved references. If you call
LoadExternalModule to load an object or static library file at run time, the Utility

Library must resolve those references using function and variable symbols from the
LabWindows/CVI Run-time Engine, from the executable, or from previously loaded run-time
modules. A table of these symbols must be available in the executable. When you link your
program in LabWindows/CVI, LabWindows/CVI automatically includes a symbol table. This
is true whether you run your program in the LabWindows/CVI development environment or
as a standalone executable.

When you link your program in an external compiler, the external compiler does not make
such a table available to the Utility Library. LabWindows/CVI provides ways to help you
create the symbol table easily.

Resolving References to the LabWindows/CVI Run-Time Engine

LabWindows/CVI makes available two object files that contain symbol table information for
the LabWindows/CVI libraries that are in Run-time Engine DLLs:

¢ Includecvi\extlib\refsym.obj in your external compiler project if your run-time
modules refer to any symbols in the User Interface, Formatting and I/O, RS-232, DDE,
TCP, or Utility Library.

¢ Includecvilextlib\arefsym.obj in your external compiler project if your run-time
modules refer to any symbols in the ANSI C library. If you have to use this object file and
you use Borland C/C++ to create your executable, you must choose Static Linking for the
Standard Libraries. In the Borland C/C++ IDE, you can do this in the New Target and
Target Expert dialog boxes.

Resolving References to Symbols Not in Run-Time Engine

If your run-time modules refer to any other symbols from your executable, you must use
LabWindows/CVI to generate an object file that contains a table of those symbols. Create an
include file that contains complete declarations of all the symbols your run-time modules
reference from the executable. The include file can contain nésthdle statements and

can contain executable symbols that your run-time modules do not refer to. If your run-time

LabWindows/CVI Programmer Reference Manual 3-12 © National Instruments Corporation

Chapter 3 Windows 95/NT Compiler/Linker Issues

module references any of the commonly used Windows SDK functions, you can use the
cvilsdkiinclude\basicsdk.h file.

Execute thé&xternal Compiler Support command in th8uild menu of the Project window.

A dialog box appears. Enable the Using Load External Module option. Enable the Other
Symbols checkbox if it is not already enabled. Enter the pathname of the include file in the
Header File control. Enter the pathname of the object file to generate in the Object File
control. Click on theCreate button to the right of the Object File control.

Include the object file in the external compiler project you use to create your executable. Also,
you must callnitCVIRTE at the beginning of younain orwinMain function. Refer to the
Calling InitCVIRTE and CloseCVIRT&ection later in this chapter.

Resolving Run-Time Module References to Symbols Not Exported
from a DLL

When you load an object or static library file from a DLL, you might want to resolve
references from that module using global symbols the DLL contains, but does not export. You
can do this by callingoadExternalModuleEx . When you pass the DLL module handle to
LoadExternalModuleEx , the Ultility Library searches the symbol table the DLL contains
before searching the table that the executable contains. Refer to Chaliiiy8,ibrary, of

the LabWindows/CVI Standard Libraries Reference Marfioatetailed information on
LoadExternalModuleEx

If you create your DLL in LabWindows/CVI, LabWindows/CVI includes the table of symbols
in the DLL automatically. If you create your DLL using an external compiler, the external
compiler does not make such a table available to the Utility Library. Thus, when you use an
external compiler, you must include in your DLL one or more object files that contain the
necessary symbol tables. You can do this using the technique that the previous section,
Resolving References to Symbols Not in Run-Time Emgreribes. You must call

INitCVIRTE andCloseCVIRTE in yourDLLMain function. Refer to th€alling InitCVIRTE

and CloseCVIRTEection later in this chapter.

Run State Change Callbacks Are Not Available in External Compilers

When you use a compiled module in LabWindows/CVI, you can arrange for
LabWindows/CVI to notify the module of a change in the execution status such as start, stop,
suspend, or resume. You do this through a callback function that is always named
__RunStateChangeCallback. TheNotification of Changes in Run Statection, in

Chapter 2Using Loadable Compiled Modulesf this manual, describes this in detail.

The run state change callback capability in LabWindows/CVI is necessary because the
LabWindows/CVI development environment executes your program as part of the
LabWindows/CVI process. When your program terminates, the operating system does not
release resources as it does when a process terminates. LabWindows/CVI attempts to release

© National Instruments Corporation 3-13 LabWindows/CVI Programmer Reference Manual

Chapter 3

Windows 95/NT Compiler/Linker Issues

resources your program allocated, but your compiled module might have to do more. Also, if
the program suspends for debugging purposes, your compiled module might have to disable
interrupts.

When you run an executable created in an external compiler, it always executes as a separate
process, even when you debug it. Thus, the run state change callback facility is not necessary
and does not work. External compilers report link errors when you define
__RunStateChangeCallback in more than one object file. If you include a run state

change callback in a compiled module that you intend to use both in LabWindows/CVI and
an external compiler, it is a good idea to put the callback function in a separate source file and
create alib file instead of aobj file.

Calling InitCVIRTE and CloseCVIRTE

If you link an executable or DLL in an external compiler, you must calhtt@vIRTE
function at the beginning of yourain , WinMain , or DLLMain function.

For an executable usimgain as the entry point, your code must include the following
segment:

#include <cvirte.h>
int main (argc, char *argv[])

{
if (InitCVIRTE(O, argv, 0) == 0)
return (-1);/* out of memory */
[* your other code */
}

For an executable usiMginMain as the entry point, your code must include the following
segment:

#include <cvirte.h>
int __stdcall WinMain (HINSTANCE hinstance,
HINSTANCE hPrevinstance,
LPSTR IpszCmdLine, int nCmdShow)

{
if (InitCVIRTE(hInstance, 0, 0) == 0)
return (-1);/* out of memory */
[* your other code */
}

LabWindows/CVI Programmer Reference Manual 3-14 © National Instruments Corporation

Chapter 3 Windows 95/NT Compiler/Linker Issues

For a DLL, you also have to ca&lloseCVIRTE in DLLMain. The code must include the
following segment:

#include <cvirte.h>
int __stdcall DlIMain (HINSTANCE hinstDLL, DWORD fdwReason,
LPVOID pvReserved)
{
if (fdwReason == DLL_PROCESS_ATTACH)
{
if (INitCVIRTE (hinstDLL, 0, 0) == 0)
return O; /* out of memory */
/* your other ATTACH code */
}
else if (fdwReason == DLL_PROCESS_DETACH)
{
[* your other DETACH code */
CloseCVIRTE ();
}

return 1;

}

Note It is harmless, but unnecessary, to call these functions when you link your
executable in LabWindows/CVI for Windows 95/NT.

Watcom Stack Based Calling Convention

When you use the LabWindows/CV!I libraries in the Watcom compiler, you must set the
default calling convention to the 80486 Stack Based calling convention. In the command line
compiler, this is theds option. In the Watcom IDE, you can set the default calling convention
by using theéDptions»C Compiler Switchescommand. The option is in the Target Processor
section of the Memory Model and Processor Switches section of the dialog box. If you do not
set this option, the Watcom linker reports undefined references to the LabWindows/CVI
run-time libraries.

Using Object and Library Files in External Compilers

When you use an external compiler to link a project that contains object or static library files
created in LabWindows/CVI, keep several points in mind.

Default Library Directives

Most compilers insert default library directives in the object and library files they generate.
A default library directive tells the linker to automatically include a named library in the link.
Normally, the directive refers to the name of C library files. If no files in the link contain a

© National Instruments Corporation 3-15 LabWindows/CVI Programmer Reference Manual

Chapter 3

Windows 95/NT Compiler/Linker Issues

default library directive, and the linker does not explicitly include a C library in the link, the
linker reports unresolved function references in the object modules.

Object and static library files that LabWindows/CVI creates do not contain a default library
directive. This has different implications for each compiler.

Microsoft Visual C/C++

If you include in your project at least one object file that contains a default library directive,
the Visual C linker uses that library to resolve references in all object and library files, even
the files you create in LabWindows/CVI. Object files you create in Visual C usually contain
default library directives.

If you do not include in your project any object files or libraries you create in Visual C, you
can add the following Visual C libraries to the project to avoid link errors:

libc.lib
oldnames.lib

In the Visual C development environment, add these library names usingtiheategory
in theLink tab of the Project Settings dialog box.

Borland C/C++

No problems exist with the absence of default library directives when you use the Borland
compiler.

Watcom C/C++

Like Visual C, at least one object file must contain a default library directive to cause the
C library to be linked in. In addition, Watcom also requires a default library directive for
floating-point support.

If you do not include in your project any object files with the required directives, add the
following libraries, in the order shown, to the Libraries setting in the Windows Linking
Switches dialog box:

clib3s
math387
noemu387

Symantec C/C++

Each object file must have the default library directive for the C library. You must explicitly
add the Symantec C library to your project. The library filenamenidb and it is in the
lib subdirectory under the Symantec installation directory.

LabWindows/CVI Programmer Reference Manual 3-16 © National Instruments Corporation

Chapter 3 Windows 95/NT Compiler/Linker Issues

Borland Static versus Dynamic C Libraries

When you link a Borland C/C++ project that contains object or static library files you create
in LabWindows/CVI, it is a good idea to configure the Borland project to use the static version
of the Borland C libraries.

If you choose to use the dynamic C libraries, you must compile the LabWindows/CVI object
modules with the RTLDLL macro. You must define th&®TLDLL macro in your source code
before including any of the Borland C header files.

Borland Incremental Linker

You cannot use your LabWindows/CVI object or static library files in the Borland C compiler
if you choose to use the incremental linker. Turn off the Use Incremental Linker option.

Borland C++ Builder

You cannot use your LabWindows/CVI object or static library files in the
Borland C++ Builder.

Watcom Pull-in References

The Watcom linker does not automatically link the startup code into your application or DLL.
Instead, it requires the module that contaias , WinMain , or DIIMain to reference a

special symbol that the appropriate startup code module resolves. The Watcom compiler
automatically generates a reference to the special symbol into any module that sitgins
WinMain , orDIIMain . This symbol is_DLLstart , wstart2_ , or_cstart_ ,

depending on whether the project is for a DLL, Windows application, or console application,
respectively. Object modules compiled in LabWindows/CVI do not contain such references.
LabWindows/CVI cannot generate the correct reference because it makes no distinction
between console and non-console applications.

You must include the symbol reference in your object file explicitly. For example, if your
module contains th@ain function, you can generate the correct symbol reference by adding
the following to the source code for the module:

extern int _cstart_;
void *dummy = & _cstart_;

© National Instruments Corporation 3-17 LabWindows/CVI Programmer Reference Manual

Chapter 3 Windows 95/NT Compiler/Linker Issues

Creating Object and Library Files in External Compilers
for Use in LabWindows/CVI

When you use a compatible external compiler to create an object or library file for
use in LabWindows/CVI, you must use the include files ircthienclude and
cvilsdk\include directories. Ensure that these directories have priority over the
default paths for the compiler’s C library and SDK library include files.

You must choose the compiler options carefully. LabWindows/CVI1 tries to work with the
default options for each compiler as much as possible. In some cases, however, you have to
choose options that override the defaults. In other cases you must accept the defaults.

Microsoft Visual C/C++
LabWindows/CVI is compatible with all the defaults.

You mustnot use the following options to override the default settings:

13 (Unsigned Characters)

1Zp (Struct Member Alignment)
IGe (Stack Probes)

/Gh (Profiling)

IGs (Stack Probes)

Borland C/C++

LabWindows/CVI is compatible with all the defaults.

You mustnot use the following options to override the default settings:

-a (Data Alignment)

-K (Unsigned Characters)

-u- (Turn Off Generation of Underscores)
-N (Test Stack Overflow)

-p (Pascal Calling Convention)

-pr (Register Calling Convention)

-fp (Correct Pentium FDIV Flaw)

LabWindows/CVI Programmer Reference Manual 3-18 © National Instruments Corporation

Chapter 3 Windows 95/NT Compiler/Linker Issues

Watcom C/C++
You must use the following options to override the default settings:
-ei (Force Enums to Type Int)
-bt=nt (Target Platform is Windows 95/NT)
-mf (Flat Memory Model)
-4s (80486 Stack-Based Calling)
-s (Disable Stack Depth Checking)

g (Change Char Default to Signed)
-fpi87 (Generate In-Line 80x87 Code)

If your external object callsoadExternalModule ~ orLoadExternalModuleEx , you must
also add the following compiler option:

-d__NO_MATH_OPS
You mustnot use the following option to override the default settings:

-Zp (Structure Alignment)

Symantec C/C++

You must use the following options to override the default settings:
-mn (Windows 95/NT Memory Model)
-f (Generate In-Line 80x87 Code)

You mustnot use the following options to override the default settings:

-a (Struct Alignment)
-P (Use Pascal Calling Convention)
-s (Check Stack Overflow)
Note Certain specialized options can generate symbol references that cause link errors

in LabWindows/CVI. If you encounter a link error on a symbol in a module you
compiled in an external compiler and you do not recognize the symbol, try
changing your external compiler options.

© National Instruments Corporation 3-19 LabWindows/CVI Programmer Reference Manual

Chapter 3 Windows 95/NT Compiler/Linker Issues

Creating Executables in LabWindows/CVI

You can create true 32-bit Windows executables in LabWindows/CVI for Windows 95/NT. In
LabWindows/CVI for Windows 3.1, you run standalone programs using a special executable
file that contains the LabWindows/CVI run-time librariéfsyou run more than one program

at a time, Windows 3.1 loads extra copies of this special executable into memory. Under
Windows 95/NT, the LabWindows/CVI run-time libraries come in DLL form. Standalone
executables you create in LabWindows/CVI and executables you create in external compilers
use the same DLLs. If you run more than one program at a time, Windows 95/NT loads only
one copy of the DLL.

To create a standalone executable, you must first sefactialone Executabldrom the

submenu attached to tharget command in th&uild menu of the Project window. When

you selecStandalone ExecutabletheCreate Standalone Executableommand appears

below theTarget command in th®uild menu. TheCreate Standalone Executable

command under Windows 95/NT is the same as under Windows 3.1, except that you also can
specify version information to include in the executable in the form of a standard Windows
version resource.

Creating DLLs in LabWindows/CVI

In LabWindows/CVI for Windows 95/NT, you can create 32-bit DLLs. Along with each
DLL, LabWindows/CVI creates a DLL import library for your compatible compiler. You can
choose to create DLL import libraries compatible with all four external compilers.

You must have a separate project for each DLL you want to create. Byhachic Link
Library from the submenu attached to Trerget command in th8uild menu of the Project
window. When you sele@ynamic Link Library , theCreate Dynamic Link Library
command appears below tharget command in th8uild menu. Refer to ChapterBroject
Window in theLabWindows/CVI User Manugfor detailed information on th@reate
Dynamic Link Library command.

You can debug the DLLs you create in LabWindows/CVI. RefthedLL Debugging
(Windows 95/NT Onlygection in Chapter Broject Windowof theLabWindows/CVI
User Manua] for more information.

Customizing an Import Library

If you have to perform special processing in your DLL import library, you can customize it.
Instead of generating.ib file, you can generate.a file that contains source code. If you
do this, however, you can export only functions from the DLL, not variables.

LabWindows/CVI Programmer Reference Manual 3-20 © National Instruments Corporation

Chapter 3 Windows 95/NT Compiler/Linker Issues

To customize an import library, you must have an include file that contains the declarations
of all the functions you want to export from the DLL. Load the include file into a Source
window, and execute th@enerate DLL Import Source command in th€©ptions menu.

After you have generated the import source, you can modify it, including making calls to
functions in other source files. Create a new project that contains the import source file and
any other files it refers to. Selestatic Library from the submenu attached to Ferget
command in th&uild menu of the Project window. Execute teeate Static Library

command.

Note This import source code does not operate in the same way as a normal DLL import
library. When you link a normal DLL import library into an executable, the
operating system attempts to load the DLL as soon as the program starts. The
import source code LabWindows/CVI generates does not load the DLL until you
call one of the functions it exports.

Preparing Source Code for Use in a DLL

When you create a DLL, you must address the following issues that can affect your source
code and include file:

e The calling convention you use to declare the functions you want to export
» How you specify which DLL functions and variables you want to export
* Marking imported symbols in the DLL include file you distribute

This section discusses how you can address these issues when you create your DLL in
LabWindows/CVI. If you create your DLL in an external compiler, the approach is very
similar. The external compilers, however, do not agree in all aspects. This chapter also
discusses these differences.

Some of the information in this section is very technical and complex. Recommendations on
the best approaches to these issues are at the end of the section. These recommendations ar
intended to make creating the DLL as simple as possible, and to make it easy to use the same
source code in LabWindows/CVI and the external compilers.

Calling Convention for Exported Functions

If you intend for only C or C++ programs to use your DLL, you can use ttuecl or
Watcom stack-based calling convention to declare the functions you want to export. If,
however, you want your DLL to be callable from environments such as Microsoft Visual
Basic, you must declare the functions you want to export with titdcall calling
convention.

You must do this by explicitly defining the functions with thetdcall keyword. This is
true whether or not you choose to makstdcall the default calling convention for your

© National Instruments Corporation 3-21 LabWindows/CVI Programmer Reference Manual

Chapter 3

Windows 95/NT Compiler/Linker Issues

project. You must use thestdcall ~ keyword in the declarations in the include file you
distribute with the DLL.

Other platforms, such as UNIX or Windows 3.1 do not recognize ttdcall ~ keyword.

If you work with source code that you might use on other platforms, you must use a macro in
place of _stdcall . Thecvidef.h include file defines theLLSTDCALLmacro for this
purpose.

The following are examples of using theLSTDCALLmMacro.

int DLLSTDCALL MyIntFunc (void);
char * DLLSTDCALL MyStringFunc (void);

Note You cannot use the stdcall calling convention on functions with a variable

number of arguments. Consequently, you cannot use such functions in Microsoft
Visual Basic.

Exporting DLL Functions and Variables

When a program uses a DLL, it can access only the functions or variables that the DLL
exports. The DLL can export only globally declared functions and variables. The DLL cannot
export functions and variables you declarstatic

If you create your DLL in LabWindows/CVI, you can indicate which functions and variables
to export in two ways: the include file method and the qualifier method.

Include File Method

You can use include files to identify symbols to export. The include files must contain the
declarations of the symbols you want to export. The include files can contain nested
#include statements, but the DLL does not export the declarations in the nested include
files. In the Create Dynamic Link Library dialog box, you select from a list of all the include
files in the project.

The include file method does not work with other compilers. However, it is similar to the
.def method that the other compilers use.

Export Qualifier Method

You can mark each function and variable you want to export with an export qualifier.
Currently, not all compilers recognize the same export qualifier names. The most commonly
used qualifier is__declspec(dllexport) . Some also recognize export

LabWindows/CVI recognizes both. Thadef.n include file defines thBLLEXPORT

LabWindows/CVI Programmer Reference Manual 3-22 © National Instruments Corporation

Chapter 3 Windows 95/NT Compiler/Linker Issues

macro to resolve differences among compilers and platforms. The following are examples of
using theDLLEXPORTmMacro:

int DLLEXPORT DLLSTDCALL MyFunc (int parm) {}
int DLLEXPORT myVar = 0;

If the type of your variable or function requires an asteti}kn(the syntax, put the qualifier
after the asterisk, as in the following example:

char * DLLEXPORT myVar = NULL;

Note Borland C/C++ version 4.% requires that you place the qualifier before the
asterisk. In Borland C/C++ 5.0, you can place the qualifier on either side of the
asterisk.

When LabWindows/CVI creates a DLL, it exports all symbols for which export qualifiers
appear in either the definition or the declaration. If you use an export qualifier on the
definition and anmport qualifier on the declaration, LabWindows/CVI exports the symbol.
The external compilers differ widely in their behavior on this point. Some require that the
declaration and definition agree.

Note If you include in your DLL project an object or library file that defines exported
symbols, LabWindows/CVI cannot correctly create import libraries for each of the
external compilers. This problem does not arise if you use only source code files
in your DLL project.

Marking Imported Symbols in Include File Distributed with DLL

If your DLL might be used in a C or C++ environment, you must distribute an include file
with your DLL. The include file must declare all the symbols the DLL exports. If any of these
symbols are variables, you must mark them with an import qualifier. Variable declarations
require import qualifiers so that the compiler can generate the correct code for accessing the
variables.

You can use import qualifiers on function declarations, but they are not necessary. When you
use an import qualifier on a function declaration, external compilers can generate slightly
more efficient code for calling the function.

Using import qualifiers in the include file you distribute with your DLL can cause problems
if you use the same include file in the DLL source code:

e If you mark variable declarations in the include file with import qualifiers and you use
the include file in a source file other than the one in which you define the variable,
LabWindows/CVI and the external compilers treat the variable as if it were imported
from anotherDLL and generate incorrect code as a result.

e If you use export qualifiers in the definition of symbols and the include file contains
import qualifiers on the same symbols, some external compilers report an error.

© National Instruments Corporation 3-23 LabWindows/CVI Programmer Reference Manual

Chapter 3

Windows 95/NT Compiler/Linker Issues

You can solve these problems in several different ways:

You can avoid exporting variables from DLLs, and thereby eliminate the need to use
import qualifiers. For each variable you want to export, you can create functions to
get and set its value or a function to return a pointer to the variable. You do not have
to use import qualifiers for functions. This is the simplest approach and works in
LabWindows/CVI. However, it does not work if you use an export qualifier in a
function definition and you create the DLL with an external compiler that requires
the declaration to use the same qualifier.

You can create a separate include file for distribution with the DLL.

You can use a special macro that resolves to either an import or export qualifier
depending on a conditional compilation flag. In LabWindows/CVI you can set the flag
in your DLL project by using th€ompiler Definescommand in th®ptions menu of

the Project window.

Recommendations
To make creating a DLL as simple as possible, adhere to the following recommendations:

Use theDLLSTDCALLmacro in the declaration and definition of all functions you want
to export. Do not export functions with a variable number of arguments.

Identify the symbols you want to export using the include file method. Do not use export
qualifiers. If you use an external compiler, use.tle¢ file method.

Do not export variables from the DLL. For each variable you want to export, create
functions to get and set its value or a function to return a pointer to the variable. Do not
use import qualifiers in the include file.

If you follow these recommendations, you reap the following benefits:

You can distribute with your DLL the same include file that you include in the source files
you use to make the DLL. This is especially useful when you create DLLs from
instrument drivers.

You can use the same source code to create the DLL in LabWindows/CVI and any of the
four compatible external compilers.

You can use your DLL in Microsoft Visual Basic or other non-C environments.

Automatic Inclusion of Type Library Resource for Visual Basic

The Create Dynamic Link Library command gives you the option to automatically create
a Type Library resource and include it in the DLL. When you use this option, Visual Basic
users can call the DLL without having to use a header file that cobigitage statements

for the DLL functions. The command requires that you have a function panel file for

your DLL.

LabWindows/CVI Programmer Reference Manual 3-24 © National Instruments Corporation

Chapter 3 Windows 95/NT Compiler/Linker Issues

If your function panel file contains help text, you can generate a Windows help file from it
using theGenerate Windows Helpcommand in th®©ptions menu of the Function Tree
Editor window. TheCreate Dynamic Link Library command provides an option to include
links into the Window help file in the Type Library. These links allow Visual Basic users to
access the help information from the Type Library Browser.

Visual Basic has a more restricted set of types than C. AlsGrélage Dynamic Link
Library command imposes certain requirements on the declaration of the DLL API. Use the
following guidelines to ensure that Visual Basic can use your DLL:

« Always use typedefs for structure parameters and union parameters.

* Do not use enum parameters.

» Do not use structures that require forward references or that contain pointers.
« Do not use pointer types except for reference parameters.

Creating Static Libraries in LabWindows/CVI

You can create static libraryily) files in LabWindows/CVI for Windows 95/NT. Static
libraries are libraries in the traditional sense—a collection of object files—as opposed to a
dynamic link library or an import library. You can use just one project to create static library
files that work with all four compatible external compilers, but only if you include no object
or library files in the project.

You must have a separate project for each static library you want to createSgsiect
Library from the submenu attached to frerget command in th&uild menu of the Project
window. When you select tt&tatic Library option, theCreate Static Library command
appears below th€arget command in th8uild menu. Refer to Chapter 8purce,
Interactive Execution and Standard Input/Output WindafsheLabWindows/CVI User
Manualfor detailed information on th@reate Static Library command.

Note If you include a.lib file in a static library project, LabwWindows/CVI includes all
object modules from thdib in the static library it creates. When you create an
executable or DLL, LabWindows/CVI uses only the necessary modules from the
lib file.

Note Do not set the default calling convention to stdcall if you want to create a
static library for all four compatible external compilers.

© National Instruments Corporation 3-25 LabWindows/CVI Programmer Reference Manual

Chapter 3 Windows 95/NT Compiler/Linker Issues

Creating Object Files in LabWindows/CVI

You can create an object file in LabWindows/CVI in one of two ways:

¢ Include a sourced)) file in your project. Enable the Compile into Object option for the
source file by double-clicking in the space next to the filename in the Project window
under the column marked “O”. Compile the file.

e Openasourceq) file and select th€reate Object Filecommand in th©ptions menu
of the Source window.

In LabWindows/CVI for Windows 95/NT, you can choose to create an object file for only the
currently selected compiler or to create object files for all four compatible external compilers.

Note Do not set the default calling convention to stdcall if you want to create a
static object for all four compatible external compilers.

Calling Windows SDK Functions in LabWindows/CVI

You can call Windows SDK Functions in LabWindows/CVI for Windows 95/NT. If you
install the LabwWindows/CV!1 full development system from CD-ROM, you can call all

the Windows SDK functions. Otherwise, you can call only a subset of the Windows SDK
functions.

To view help for the SDK functions, select éndows SDK command in théielp menu
of any LabWindows/CVI window.

Windows SDK Include Files

You must include the SDK include filéeforethe LabWindows/CVI include files. In this
way, you avoid problems that arise from function name and typedef conflicts between the
Windows SDK and the LabWindows/CVI libraries. The LabWindows/CVI include files
contain special macros and conditional compilation to adjust for declarations in the SDK
include files. Thus, LabWindows/CVI must process the SDK include files first, followed by
the LabWindows/CVI include files.

When you compile in LabWindows/CVI or when you use an external compiler to compile
your source files for linking in LabWindows/CVI, use the LabWindows/CVI SDK include
files. The LabWindows/CVI SDK include files are in thésdk\include directory. The
LabWindows/CVI compiler automatically searchesdhigsdk\include directory. You

do not have to add it to your include paths.

When you use an external compiler to compile and link your source files, you must use the
SDK include files that come with the external compiler. If you use an external compiler to
compile your source files for linking in LabWindows/CVI, use the LabWindows/CVI SDK

LabWindows/CVI Programmer Reference Manual 3-26 © National Instruments Corporation

Chapter 3 Windows 95/NT Compiler/Linker Issues

include files. For more information, refer to tBetting Up Include Paths for
LabWindows/CVI, ANSI C, and SDK Librarssction later in this chapter.

The number of SDK include files is very large. Normally, you have to include only
windows.h because it includes many, but not all, of the other include files. The inclusion of
windows.h along with its subsidiary include files significantly increases compilation time
and memory usag&/IN32_LEAN_AND_MEAI$ a macro from Microsoft that speeds

compiling by eliminating the less commonly used portiongsiedows.h and its subsidiary
include files. By default, LabWindows/CVI adi3~IN32_LEAN_AND_MEAMNS a

compile-time definition when you create a new project. You can alter this setting by using the
Compiler Definescommand in th®©ptions menu of the Project window.

Using Windows SDK Functions for User Interface Capabilities

The LabWindows/CVI User Interface Library uses the Windows SDK. It is not designed to
be used in programs that attempt to build other user interface objects at the SDK level. While
no specific restrictions exist on using SDK functions in LabWindows/CVI, National
Instruments recommends that you base your user interface either entirely on the
LabWindows/CVI User Interface Library or entirely on another user interface development
system.

Using Windows SDK Functions to Create Multiple Threads

Although you can use the Windows SDK Functions to create multiple threads in a
LabWindows/CVI program, the LabWindows/CVI development environment cannot handle
multiple threads. For instance, if your main program terminates without destroying the
threads, they do not terminate. Also, the LabWindows/CVI libraries are not multithread safe
when you run a program in the LabWindows/CVI development environment.

For information on using the LabWindows/CVI libraries in a multithreaded executable, refer
to theMultithreading and the LabWindows/CVI Librarissction earlier in this chapter.

Automatic Loading of SDK Import Libraries

All the SDK functions are in DLLs. LabWindows/CVI and the four external compilers each
come with a number of DLL import libraries for the SDK functions. Most of the commonly
used SDK functions are in the following three import libraries:

kernel32.lib
gdi32.lib
user32.lib

LabWindows/CVI for Windows 95/NT automatically loads these three libraries when it starts

up and searches them to resolve references at link time. Thus, you do not have to include these
libraries in your project.

© National Instruments Corporation 3-27 LabWindows/CVI Programmer Reference Manual

Chapter 3 Windows 95/NT Compiler/Linker Issues

If the LabWindows/CV!1 linker reports SDK functions as unresolved references, you must add

import libraries to your project. Refer to thé\sdk\sdkfuncs.txt file for associations
of SDK import libraries to SDK functions. The import libraries are inctliwdk\lib
directory.

Setting Up Include Paths for LabWindows/CVI, ANSI C,
and SDK Libraries

The rules for using SDK include files are not the same as the rules for using ANSI C standard
library include files, which in turn are different than the rules for using the LabWindows/CVI
library include files. Refer to theclude Files for the ANSI C Library and the
LabWindows/CVI LibrariegandWindows SDK Include Filesections earlier in this chapter.

You must set up your include paths differently depending on the environment in which you
compile and link. A discussion of each case follows.

Compiling in LabWindows/CVI for Linking in LabWindows/CVI

Use the LabWindows/CVI SDK and ANSI C include files. You do not have to set up any
special include paths; LabWindows/CVI finds the correct include files automatically.

Compiling in LabWindows/CVI for Linking in an External Compiler

Use the LabWindows/CVI SDK include files and the ANSI C include files from the external
compiler. Using thénclude Pathscommand in th®ptions menu of the Project window, add
the following as explicit include paths at the beginning of the project-specific list:

cvilinclude
cvilsdk\include
directory containing the external compiler's ANSI C include paths

Compiling in an External Compiler for Linking in an External Compiler

Use the SDK and ANSI C include files from the external compiler. This happens
automatically. Specify the following directories as include paths in the external compiler for
the LabWindows/CVI library include files.

cvilinclude

LabWindows/CVI Programmer Reference Manual 3-28 © National Instruments Corporation

Chapter 3 Windows 95/NT Compiler/Linker Issues

Compiling in an External Compiler for Linking in LabWindows/CVI

Use the LabWindows/CVI SDK and ANSI C include files. Specify the following directories
as include paths in the external compiler.

cvilinclude
cvilinclude\ansi
cvi\sdk\include

Handling Hardware Interrupts under Windows 95/NT

Under Windows 3.1, you can handle hardware interrupts in a DLL. Under Windows 95, you
must handle hardware interrupts in a VxD. Under Windows NT, you must handle hardware
interrupts in a kernel-mode driver. You cannot create VxDs and kernel-mode drivers in
LabWindows/CVI. Instead, you must create them in Microsoft Visual C/C++, and you also
must have the Microsoft Device Driver Developer Kit (DDK).

Under Windows 3.1, it is extremely difficult to call source code into LabWindows/CVI at
interrupt time. Making such a call is easier under Windows 95/NT. Under Windows 95/NT,
you can arrange for the VxD or kernel-mode driver to call a function in your
LabWindows/CVI source code after the interrupt service routine exits. You do this by creating
a separate thread for your interrupt callback function. The callback function executes a loop
that blocks its thread until the interrupt service routine signals it. Each time the interrupt
service routine executes, it unblocks the callback thread. The callback thread then performs
its processing and blocks again.

LabWindows/CVI includes source code template files for a VxD and a kernel mode driver. It
also includes a sample main program to show you how to read and write registers on a board.
There is one set of files for Windows 95 and another for Windows NT.

The files are irtvilvxd\win95 andcvilvxd\winnt . The filetemplate.doc in each
directory contains some basic information.

© National Instruments Corporation 3-29 LabWindows/CVI Programmer Reference Manual

Windows 3.1
Compiler/Linker Issues

This chapter describes the different kinds of compiled modules available under
LabWindows/CVI for Windows 3.1 and includes programming guidelines for
modules you generate with external compilers.

Using Modules Compiled by LabWindows/CVI

You can generate a compilathj or.o module from a source file within LabWindows/CVI
using theCreate Object Filecommand in th®©ptions menu of a Source window. You can
then use the compiled module in any of the methods describedAbdlie Loadable
Compiled Modulesection in Chapter 2)sing Loadable Compiled Modulesf this manual.

Using 32-Bit Watcom Compiled Modules
under Windows 3.1

You must adhere to the following rules for a 32-bit Watcom compiled modiblje (or

dib

file):
You can call LabWindows/CVI library functions.

If you make a call to the ANSI C Standard Library, you must include the
LabWindows/CVI header files instead of the Watcom header files.

You cannot call Watcom C library functions outside the scope of the ANSI C Standard
Library.

You can calbpen, close ,read ,write ,Iseek , oreof , but you must include
lowlvlio.h from LabWindows/CVI.

You cannot call functions in the Windows Software Development Kit (SDK), install
interrupts, perform DMA, or access hardware directly. These tasks must be done with a
Dynamic Link Library (DLL). The exception to this is that you can uséntheandoutp
functions.

You cannot define a function 8\SCAL pascal , or_pascal if you intend to call it
from source code in LabWindows/CVI. Also, you cannot use any non-ANSI-C-standard

© National Instruments Corporation 4-1 LabWindows/CVI Programmer Reference Manual

Chapter 4 Windows 3.1 Compiler/Linker Issues

keywords such afar , near , orhuge in the declaration of functions to be called from
LabWindows/CVI source code.

e If your Watcom-compiled module performs floating point operations, you must use
Watcom Version 9.5 or later.

« Use the following options when you compile with Watcom IDE:

— Set the Project Target Environment to 32-bit Windowséahd set the Image Type
to Library [.lib].

— Turn on the Disable Stack Depth Checking [-s] option.

— Turn on the Change Char Default to Signed [-j] option.

— Add-zw -d_NI_mswin16_ to theOther Options.

— Turn on the Generate as Needed [-of] option for Stack Frames.

— Turn on the No Debugging Information option.

— Turn on the In-line with Coprocessor [fpi87] option for Floating Point Model.

— Turn on the Compiler default option for the Memory Model.

— Turn on the 80486 Stack-Based Calling [-4s] option for the Target Processor.
¢ Use the following compiler flags when usiwgc386 orwcc386p :

— -zZw -s -4s -j -fpi87 -d0 -of -d_NI_mswin16_

— You can use optimization flags in addition tofthand you can use other flags, such
as-wn, which do not affect the generation of object code.

Using 32-Bit Borland or Symantec Compiled Modules
under Windows 3.1

In this sectionCVI refers to both LabWindows/CV| and Watcom modules, wBddand
applies to both Borland and Symantec modules.

The following restrictions apply to Borland object modules:

< Borland packs bit fields in structures differently than CVI, so you cannot share structures
with bit fields between Borland and CVI.

« Borland returns structures, floats, and doubles differently than CVI. Therefore, functions
that return these types cannot be called from CVI if they are defined in Borland, or vice
versa. The exceptions are the ANSI C library functions that return doubles, which you
can call from within Borland compiled modules.

Note This rule applies only to return values. You can use structs, floats and doubles as
output parameters without limitation.

LabWindows/CVI Programmer Reference Manual 4-2 © National Instruments Corporation

Chapter 4 Windows 3.1 Compiler/Linker Issues

* ANSI C library functiongdiv andldiv return structures, and hence you cannot call
them from Borland compiled modules.

* The typelong double is the same afouble in CVI, while in Borland it is 10 bytes
long, so you cannot share objects of this type between Borland and CVI modules. This
affects the'woLe" , "%Lf" , "%Lg" format specifiers ofrintf | sprintf |, fprintf |
scanf , sscanf , fscanf , and others.

e Because you cannot share structures with bit fields between Borland and CVI, you cannot
use the macros istdio.n (getc , putc , fgetc , fputc) in Borland objects.

* wchar_t is defined as ahar in CVI, whereas it is defined ashort in Borland,
so ANSI C library functions that retuschar_t or takewchar_t parameters do
not work.

Use the following options when you compile with Borland & 4.

e Set the target to be a Win32 application.

* Define_NI_mswinl6_

» Set the include directories to pointd@\include before other include directories.
e Turn off the Allocate Enums as Ints option.

e Turn off the Fast Floating Point option.

» Use the C calling convention.

If you use a file with ac extension, Borland C++xcompiles it as a C source file. If your
file has acpp extension, Borland C++xcompiles it as a C++ source file; you must use
extern"C" for any functions or variables you want to access from a C file.

Use the following options when you compile with Symantec C++ 6.0:

» Set the target to be a Win32s executable.

* Define_NI_mswinl6_.

» Setthe include directories to pointd\include before any other include directories.
e Set Structure Alignment to 1 byte.

e Turn off the Use Pascal Calling Convention option.

16-Bit Windows DLLs

You can call functions in a 16-bit DLL from source code or from a 32-bit compiled module.
You can compile your 16-bit DLL in any language using any compiler that generates DLLSs.
If you want to program with DMA or interrupts, or access the Windows APImumtuse a
Windows DLL.

© National Instruments Corporation 4-3 LabWindows/CVI Programmer Reference Manual

Chapter 4 Windows 3.1 Compiler/Linker Issues

You must observe certain rules and restrictions in a DLL you want to use with
LabWindows/CVI. If you experience problems using a DLL in LabWindows/CVI,
you might have to contact the developer of the DLL to obtain modifications.

Because LabWindows/CVI is a 32-bit application, spegliaé codds required to
communicate with a 16-bit DLL. For some DLLs, LabWindows/CVI can automatically
generate this glue code from the include file when loading the DLL. For other DLLs, you
have to modify the glue source code and compile it with Watcom ietg aor.lib file.

The normal way of communicating with a DLL is by calling functions in the DLL. However,
cases exist where you must use other communication methods. The most typical case is that
of an interrupt service routine in a DLL that naotifies the application when an interrupt occurs.
This is done through a callback function. Also, LabWindows/CVI can recognize messages
posted by a DLL through the Windows Application Programming Interface (API) function
PostMessage and initiate a callback function.

Helpful LabWindows/CVI Options for Working with DLLs

LabWindows/CVI provides two options that can be helpful when working with DLLs. The
options can be found in tiun Options menu of the Project window:

« Enable the Check Disk Dates Before Each Run option when you iteratively modify a
DLL or DLL glue code file and run a LabWindows/CVI test program that calls into the
DLL. By enabling the Check Disk Dates Before Each Run option, you ensure that you
link the most recent version of the DLL and DLL glue code into your program. You can
leave this option enabled at all times. The only penalty is a small delay each time you
build or run the project.

e By default, LabWindows/CVI does not unload and reload DLLs between each execution
of your program. This eliminates the delay in reloading the DLLs before each run. It
allows the DLLs to retain state information between each run. If, however, you use a DLL
that does not work correctly across multiple program executions, enable the Reload
DLLs Before Each Run option.

DLL Rules and Restrictions

To call into a 16-bit DLL from LabWindows/CVI 32-bit code, you must observe the following
rules and restrictions for DLL functions:

« Inthe DLL header file, change all referencemto into references tshort .

¢ Inthe DLL header file, change all referencesrtsigned or unsigned int to
unsigned short

¢ You can declare the functions in the DLLRSSCALor asCDECL
« You cannot use variable argument functions.

LabWindows/CVI Programmer Reference Manual 4-4 © National Instruments Corporation

Chapter 4 Windows 3.1 Compiler/Linker Issues

* You can use the argument tygdar , unsigned char , int , unsigned int , short
unsigned short ,long ,unsignedlong ,float , anddouble , as well as pointers to
any type, and arrays of any type. You can use typedefs for these types.

* You can use the return typesd , char , unsigned char , int , unsigned int ,
short , unsigned short ,long , andunsigned long , as well as pointers to any type.
You can use typedefs for these types.

* You can use the return types float and double only if the DLL is created with a
Microsoft C compiler, and the functions returning floats or double are declared with the
cdecl calling convention. You do not have to modify the glue code generated for
functions that return float or double values.

* Inthe DLL header file, enum sizes must be consistent between LabWindows/CVI and the
compiler for the DLL.

typedef enum {
No_Etrror,
Device_Busy,
Device_Not_Found
} ErrorType;

The size oErrorType is 2 bytes in Visual C++, whereas it is 1 byte in
LabWindows/CVI. To force LabWindows/CVI to tre@trorType as 2 bytes, add
another enum value explicitly initialized to a 2-byte value, such as the following.

ErrorType_Dummy = 32767

» Ifthe DLL you are using performs DMA on a buffer you pass to it, you might experience
a problem. The DLL might attempt to lock the buffer in memory by calling the Windows
SDK functionGlobalPageLock . GlobalPageLock fails on buffers allocated with the
Watcommalloc function that LabWindows/CVI uses in 32-bit mode.

Write the DLL so that ifslobalPageLock fails, the DLL attempts to lock the buffer
with the following code:

int DPMILock (void *buffer, unsigned long size)
{

DWORD base;

unsigned sel, offset;

union _REGS regs;

sel = SELECTOROF(buffer);

offset = OFFSETOF(buffer);

base = GetSelectorBase(sel);

base = base+offset;

regs.x.ax = 0x600; /* DPMI lock memory function */
regs.x.bx = HIWORD(base);

regs.x.cx = LOWORD(base);

regs.x.di = LOWORD(size);

© National Instruments Corporation 4-5 LabWindows/CVI Programmer Reference Manual

Chapter 4

Windows 3.1 Compiler/Linker Issues

regs.x.si = HIWORD(size);
int86(0x31, ®s, ®s);
return regs.x.cflag;

}

After the DMA is complete, you must unlock the buffer. You can unlock the buffer using
theDPMILock function, if you setegs.x.ax t0o0x601 , instead oHx600 .

If you compile the DLL with théFPi or/FPc switches or with néFP switches

(/FPi is the default), the DLL uses thi@N87EM.DLL floating point emulator.
LabWindows/CVI does not us®IN87EM.DLL. If the DLL usesWIN87EM.DLL, use the
following strategy in the DLL to prevent conflicts:

1. Structure the code so that all functions that perform any floating-point math have
known entry and exit points. Ideally, specify a particular set of exported entry
points as the only ways into the floating-point code.

2. Call the Windows SDK functioRPInit in each of these entry points. Store the
previous signal handler in a function pointer.

3. Ifthe DLL has its own exception handler, cighal to register the DLL’'s own
signal handler.

Perform the floating-point math.

5. Upon exiting through one of the well-defined DLL exit points, call the Windows
SDK functionFPTerm to restore the previous exception handler and terminate
the DLL’s use ofWIN87EM.DLL.

typedef void (*LPFNSIGNALPROC) (int, int);

[* prototypes for functions in WINS7EM.d11 */
LPFNSIGNALPROC PASCAL_FPInit (void);
VOID PASCAL_FPTerm (LPFNSIGNALPROC);

void DIIFunction (void)

{

LPFNSIGNALPROC OldFPHandler;

/* save the floating point state, and setup the */

/* floating point exception handler for this DLL. */
OldFPHandler = _FPInit ();

signal (SIGFPE, DLLsFPEHandler); /* optional */

LabWindows/CVI Programmer Reference Manual 4-6 © National Instruments Corporation

Chapter 4 Windows 3.1 Compiler/Linker Issues

[* perform the computations */
[* restore the floating point state */
_FPTerm (OldFPHandler);

}

Note If you use Microsoft C to build the DLL, you might get a linker error for an
undefined symbol acrtused2 . This error occurs only in Microsoft C
versions 7.00 and later. Include the following dummy function in your
DLL to fix this error. Also, when linking to the DLL, specifWIN87EM.LIB
as the first library to be linked.
void _acrtused?2 (void)

{
}

DLL Glue Code

Because LabWindows/CVI is a 32-bit application, it does not use 16-bit import libraries or
import statements in module definition files. Instead, LabWindows/CVI uses 32-bit DLL glue
code. In some cases, it is sufficient to use glue code that LabWindows/CVI automatically
generates when it loads the DLL. However, gannotuse this method in the following
cases:

The DLL requires special interface functions compiled outside of the DLL.
You expect to pass arrays bigger than 64 K to functions in the DLL.

You pass a pointer to a function in the DLL, and the DLL uses the pointer after the
function returns. For example, you pass an array to a function that starts an asynchronous
I/O operation. The function returns immediately, but the DLL continues to operate on the
array.

You pass a function pointer to the DLL, and the DLL calls the function later. For example,
the DLL makes a direct callback into 32-bit code.

You pass to the DLL a pointer that points to other pointers. Two examples of pointers that
point to other pointers are an array of pointers and a structure pointer with pointer
members.

The DLL returns pointers as return values or through reference parameters.
The DLL exports functions by ordinal value only.

If your DLL falls into any of these categories, refer totd.s That Cannot Use Glue Code
Generated at Load Tinsection of this chapter for details on how to proceed. Otherwise, refer
to theDLLs That Can Use Glue Code Generated at Load Bieation, also in this chapter.

© National Instruments Corporation 4-7 LabWindows/CVI Programmer Reference Manual

Chapter 4

Windows 3.1 Compiler/Linker Issues

DLLs That Can Use Glue Code Generated at Load Time

If your DLL can use glue code generated at load time, LabWindows/CVI automatically
generates the glue code based on the contents 4f file it associates with the DLL when
it loads it.

Any functions declared @&ASCAL pascal , or _pascal in the DLL should be declared as
PASCALIn the.h file. LabWindows/CVI ignores theASCALkeyword except when
generating the glue code.

Use only standard ANSI C keywords in thefile. (The keywordPASCALis the only
exception to this rule.) For example, do not fase, near , or huge .

Note You can create an object module that contains the glue code. If you do so,

LabWindows/CVI can load the DLL faster because it does not have to regenerate
and recompile the glue code. To create the object module, loachtHde into a
Source window and sele@ptions»Generate DLL Glue Object If the DLL
pathname is listed in the project, replace it with the object module file. If the DLL
is not listed in the project, but is associated wittf@a file, make sure the object
module is in the same directory as ttip file.

DLLs That Cannot Use Glue Code Generated at Load Time

If your DLL cannot use glue code generated at load time, you must generate a glue code
source file from the DLL include file using ti&enerate DLL Glue Sourcecommand from

the Options menu of a Source window. You must then compile the glue code using the
Watcom compiler to create.@j or.lib file to be loaded with the DLL. If you also have
interface functions that must exist outside the DLL, you must combine them with the glue
code to form theobj or.lib file.

Loading a DLL That Cannot Use Glue Code Generated
at Load Time

If you have a 32-bit Watcom compilesbj or.lib file that contains glue code for a DLL,
LabWindows/CVI must load thebj or.lib file first. For instance, if you want to use
x.dll andx.obj in your program, adg.obj to the project. Dmotaddx.dll to the
project. Theobj or.lib file causes LabWindows/CVI to load thu

The.obj or.lib file must contain the glue code for the DLL. It is the presence of the glue
code that indicates to LabWindows/CVI thatla is associated with thebj or.lib file.

When LabWindows/CVI loads thebj or.lib file and finds that it contains glue code, it
first looks for thedll in the same directory as thubj or.lib file. If it cannot find
the.dll , LabWindows/CVI looks for it using the standard Windows DLL search algorithm.

LabWindows/CVI Programmer Reference Manual 4-8 © National Instruments Corporation

Chapter 4 Windows 3.1 Compiler/Linker Issues

Also, you can create.pth file in the same directory as thubj or.lib file with the same
base name. Theth file must contain a simple filename or a full pathname of the DLL. If it
is a simple filename, LabWindows/CVI uses the standard Windows DLL search algorithm.

Rules for the DLL Include File Used to Generate Glue Source

You can generate the DLL glue source file by openingtthile for the DLL in a Source
window and selectin@enerate DLL Glue Sourcefrom theOptions menu. This command
prompts you for the name offa file. It puts the glue code in.a file with the same path and
base name as the file. You must modify thisc file as this section describes and compile
it using the Watcom compiler. Refer to theing 32-Bit Watcom Compiled Modules

under Windows 3.%ection of this chapter for information on how to use the Watcom
compiler with LabWindows/CVI.

If any of the functions in the DLL are declaredPasCAL pascal , or_pascal , you must

declare them aBASCALIn the.h file you use to generate the glue code. LabWindows/CVI
ignores thePASCALkeyword except for the purposes of generating the glue code. The stub
function in the glue code ot declared aBASCAL If you include thish file in the glue

code, the Watcom compiler flags as an error the inconsistency between the declaration of the
function in theh file and the definition of the stub function. If you include it in other modules
you compile under Watcom, calls to the function erroneously compile as if the function were
PASCAL You have two options:

* Have two separaté files, one that includes tlRASCALKeyword and one that does not.
Use the one that does include B¥SCALkeyword to generate the glue code only.

» Use conditional compilation so that Watcom ignoresPh®CALmMacro when it
compiles.

Only use standard ANSI C keywords in thefile. The keywordPASCALIs the only
exception to this rule. For example, do not fage, near , orhuge.

If the DLL Requires a Support Module outside the DLL

Support modules contain special interface functions that the DLL uses but that exist outside
of the DLL. If you are unsure whether the DLL requires a support module, try to build a
project in LabWindows/CVI with the DLL in the project list. If link errors exist in the form

of unresolved references, the DLL requires special interface functions. Get the source code
for the interface functions, add it to the glue code, and compile using the Watcom compiler.

If You Pass Arrays Bigger Than 64 K to the DLL

If you pass the DLL any arrays bigger than 64 K, you must modify the glue code source file.
For example, suppose you have a function in the DLL with the following prototype:

long WriteRealArray (double realArray[], long numElems);

© National Instruments Corporation 4-9 LabWindows/CVI Programmer Reference Manual

Chapter 4 Windows 3.1 Compiler/Linker Issues

In the glue code generated by LabWindows/CVI, there is a declaratigriteReal Array
like that shown in the following example.

long WriteRealArray (double realArray[], long numElems)
{
long retval;
unsigned short cw387;
cw387 = Get387CW();
retval = (long)
InvokelndirectFunction (__static_WriteRealArray, realArray,
numElems);
Set387CW (cw387);
return retval;

}

Note The lines of code referencingw387 are necessary only if the DLL function
performs floating point operations. They are innocuous and execute quickly, so
LabWindows/CVI adds them to the glue code automatically. If the DLL function
does not perform floating point operations, you can remove these lines.

If realArray can be greater than 64 K, you must modify the interface routine as shown.

long WriteRealArray (double realArray[], long numElems)
{

long retval;

unsigned short cw387;

DWORD size;

DWORD alias;

size = numElems * sizeof(double);
if (Alloc16BitAlias (realArray, size, &alias) <0)
return < error code >;
cw387 = Get387CW();
retval = (long)
InvokelndirectFunction (__static_WriteRealArray, alias,
numElems);
Set387CW (cw387);
Freel6BitAlias (alias, size);
return retval;

LabWindows/CVI Programmer Reference Manual 4-10 © National Instruments Corporation

Chapter 4 Windows 3.1 Compiler/Linker Issues

You must also modify the call ®etindirectFunctionHandle for writeRealArray as
shown in the following code:

if (I(__static_WriteRealArray = GetIndirectFunctionHandle
(fp, INDIR_PTR, INDIR_WORD, INDIR_ENDLIST)))

by changingNDIR_PTR to INDIR_DWORD

If the DLL Retains a Buffer after the Function Returns
(an Asynchronous Operation)

If the DLL retains a buffer after the function returns, you must modify the glue code source
file. Suppose two functions existiriteRealArrayAsync operates just like

WriteRealArray , except that it returns before it completes writing the real array.
ClearAsyncWrite terminates the asynchronous I/O. The glue code interface functions for
WriteRealArrayAsync andClearAsyncWrite should be modified to resemble the
following example.

static DWORD gAsyncWriteAlias, gAsyncWriteSize;

long WriteRealArrayAsync (double realArray[], long numElems)

{

long retval;

unsigned short cw387;

DWORD size;

DWORD alias;

size = numElems * sizeof(double);

if (Alloc16BitAlias (realArray, size, &alias) < 0)
return < error code >;

cw387 = Get387CW();

retval = (long)

InvokelndirectFunction (__static_WriteRealArrayAsync, alias,

numElems);
Set387CW (cw387);
if (IsError (retval)) /* replace with macro to check if */
[* retval is error */

Freel6BitAlias (alias, size);

else {
gAsyncWriteAlias = alias;
gAsyncWriteSize = size;

}

return retval;

}

© National Instruments Corporation 4-11 LabWindows/CVI Programmer Reference Manual

Chapter 4 Windows 3.1 Compiler/Linker Issues

long ClearAsyncWrite (void)

{
/* because this does no floating point, you can remove */
[* the cw387 code */
long retval;
retval = (long) InvokelndirectFunction(__static_ClearAsyncWrite);
if (!IsError (retval)) /* replace with macro to check if */
/* retval is error */
if (gAsyncWriteAlias !=0) {
Freel6BitAlias (gAsyncWriteAlias,gAsyncWriteSize);
gAsyncWriteAlias = 0;
gAsyncWriteSize = 0;
}
return retval;
}

You can terminate LabWindows/CVI programs in the middle of execution and then re-run
them. When you terminate the program, you should also terminate the asynchronous 1/0. You
can arrange to be notified of changes in the run state by including a function with the name
RunStateChangeCallback inthe.obj or.lib file associated with the DLL. You can add

this function to the glue code file. Refer to thetification of Changes in Run Stegection

of Chapter 2Using Loadable Compiled Modulesf this manual for a complete description

of the run state change noatification. In the example we have been discussing, you should add
the following code.

#include "libsupp.h”
void CVICALLBACK __RunStateChangeCallback (int newState)
{
if (newState == kRunState_Stop)
ClearAsyncWrite ();

If the DLL Calls Directly Back into 32-Bit Code

If the DLL calls directly back into 32-bit code, you must modify the glue code source file.
You can call functions defined in 32-bit source code directly from a DLL. Although this
method is not as straightforward as Windows messaging, it is not subject to the latencies of
Window messaging. For more information about Windows messaging, refer to the
Recognizing Windows Messages Passed from adettion of this chapter.

Note If you need direct callbacks to occur at interrupt time because the latency of

Windows messaging is interfering with your application, contact National
Instruments for assistance.

LabWindows/CVI Programmer Reference Manual 4-12 © National Instruments Corporation

Chapter 4 Windows 3.1 Compiler/Linker Issues

You cannot pass pointers to 32-bit functions directly into 16-bit DLLs. The Windows SDK
interface for this is very comple&enerate DLL Glue Sourcedoes not generate this code
for you. You must write your own glue code for passing function pointers to and from a DLL,
and add it to the file th&enerate DLL Glue Sourcegenerates.

Suppose a DLL contains the following functions:

long (FAR*savedCallbackPtr) (long);
long FAR InstallCallback(long (FAR*callbackPtr) (long))

{

savedCallbackPtr = callbackPtr;
}
long InvokeCallback(long data)
{

return (*savedCallbackPtr)(data);
}

After you use th&enerate DLL Glue Sourcecommand to generate the glue code for these
functions, you must modify the code as follows.

Note Because direct callbacks must be declafed, and LabWindows/CVI cannot
compilefar functions, you must declarefar function in the glue code and pass
it to the DLL. Thisfar function calls the actual user function.

#undef MakeProcInstance /* Use version that does not */

[* convert pointer. */
#undef FreeProcInstance /* Use version that does not */
[* convert pointer. */

typedef struct { /* Holds resources required to register*/
[* the callback. */
int UserDefinedProcHandle;
CALLBACKPTR procl6;
FARPROC procl6linstance;
} CallbackDataType;
static CallbackDataType CallbackData;

static long (*UsersCallback)(long);
/* Define a 32-bit far callback whose address is passed to */

/* the DLL. It calls your function using function pointer */
/* stored in UsersCallback. */

© National Instruments Corporation 4-13 LabWindows/CVI Programmer Reference Manual

Chapter 4 Windows 3.1 Compiler/Linker Issues

static long FAR CallbackHelper(long data)
{

return (*UsersCallback)(data);

}

/* Modified glue code for the function that installs the */
[* callback. */
long InstallCallback(long (*callback)(long))
{
long retval;
unsigned short cw387;

UsersCallback = callback; /* Store CVI 32-bit pointer */
/* in static variable. */

/* Create a 16-bit thunk for the 32-bit far function */
/* CallbackHelper */

if ((CallbackData.UserDefinedProcHandle =
GetProcUserDefinedHandle()) == 0)
return FALSE;/* Too many callbacks installed */
[* or handles not freed. */

if (DefineUserProc16(CallbackData.UserDefinedProcHandle,
(PROCPTR) CallbackHelper, UDP16_DWORD,
UDP16_CDECL, UDP16_ENDLIST))
goto failed;

if (!(CallbackData.procl6 =
GetProcl16((PROCPTR)CallbackHelper,
CallbackData.UserDefinedProcHandle)))
goto failed;

CallbackData.procl6lnstance =
MakeProclnstance(CallbackData.proc16,
GetTasklInstance());

cw387 = Get387CW();

retval = (long)

InvokelndirectFunction(__static_InstallCallback,
CallbackData.procl6instance);

Set387CW(cw387);

return retval;

LabWindows/CVI Programmer Reference Manual 4-14 © National Instruments Corporation

Chapter 4 Windows 3.1 Compiler/Linker Issues

failed:
FreeCallbackResources();
return FALSE;

}

/* Call this function after unregistering the callback. */
void FreeCallbackResources(void)

{
if (CallbackData.procl6lnstance) {
FreeProcInstance(CallbackData.procl6Instance);
CallbackData.procl6instance = 0O;
}
if (CallbackData.proc16) {
ReleaseProcl6(CallbackData.proc16);
CallbackData.proc16 = 0;
}
if (CallbackData.UserDefinedProcHandle) {
FreeProcUserDefinedHandle(CallbackData.UserDefinedProcHandle);
CallbackData.UserDefinedProcHandle = 0;
}
}

If the DLL Returns Pointers

DLLs return pointers that fall into the following two classes.

« Pointers to memory that LabWindows/CVI allocates, that you pass into the DLL, and that
the DLL later returns

You must map these pointers back into normal 32-bit pointers that you can use in
LabWindows/CVI code. Use the functidMapAliasToFlat to convert these pointers.

e Pointers to memory that a DLL allocates

Because these pointers point to memory that is not in the LabWindows/CVI flat address
space, you cannot map them back into the normal 32-bit pointers that LabWindows/CVI
uses. You can access them in Watcom object code by first converting them to 32-bit far
pointers using the functiomk_FP32

To access them in LabWindows/CVI source code you must copy the data into a buffer
you allocate in LabWindows/CVI. Notice that you cannot pass 16- or 32-bit far pointers
to LabWindows/CVI library functions, and that LabWindows/CVI does not provide
access to the Watcom string and memory buffer manipulation functions that take far
pointers as arguments. You must write the loops to copy the data.

© National Instruments Corporation 4-15 LabWindows/CVI Programmer Reference Manual

Chapter 4 Windows 3.1 Compiler/Linker Issues

Case 1
Assume the DLL has the following function:

char *f(char *ptr)

{
sprintf(ptr, "hello");
return ptr;

}

Then assume that a program in LabWindows/CVI uses the furfcasrfollows:
char buffer[240];

char *bufptr;

bufptr = f(buffer);

printf("%s", bufptr);

You would have to modify the glue code as shown here:

char * f(char *ptr)
{
char * retval;
unsigned short cw387;

cw387 = Get387CW();
retval = (char *) InvokelndirectFunction(__static_f, ptr);
Set387CW(cw387);
retval = MapAliasToFlat(retval); /* Add this line to */

/* glue code. */
return retval;

Case 2
Assume the DLL has the following function:
char *f(void)

{
char *ptr;
ptr = malloc(100);
sprintf(ptr, "hello");
return ptr;

}

LabWindows/CVI Programmer Reference Manual 4-16 © National Instruments Corporation

Chapter 4 Windows 3.1 Compiler/Linker Issues

Then assume that a program in LabWindows/CVI uses the furfctisrfollows:
char *bufptr;

bufptr = f();

printf("%s", bufptr);

You would have to modify the glue code as shown here:

char * f(char *ptr)
{
char *retval;
unsigned short cw387;
char *ptr, *tmpPtr, _far *farPtr32, _far *tmpFarPtr32;
inti;

cw387 = Get387CW();
retval = (char *) InvokelndirectFunction(__static_f, ptr);
Set387CW(cw387);

/* convert the 16 bit far pointer to a 32 bit far pointer*/
farPtr32 = MK_FP32(retval);
tmpFarPtr32 = farPtr32;

/* Calculate the length of the string. Cannot call strlen*/

/* because it does not accept far pointers. */
i=0
while (*tmpFarPtr32++)
i++;
/* Allocate buffer from CVI memory and copy in data. */

if ((ptr = malloc(i + 1)) != NULL) {
tmpFarPtr32 = farPtr32;
tmpPtr = ptr;
while (*tmpPtr++ = *tmpFarPtr32++);
}

return ptr;

© National Instruments Corporation 4-17 LabWindows/CVI Programmer Reference Manual

Chapter 4

Windows 3.1 Compiler/Linker Issues

If a DLL Receives a Pointer that Points to Other Pointers

Assume the following DLL functions:

int f(char *ptrs|[]);
struct x {
char *name;

J2
int g(struct x *ptr);

For the functior , the glue code that LabWindows/CVI generates converts the pointer to the
arrayptrs to a 16-bit far pointer when you pass it to the DLL function, but does not convert
the pointers inside the arrgyrs[0], ptrs[1], ...) . Similarly, for the functiony, the

glue code that LabWindows/CVI generates converts the pointer to the strpoture(it not

the pointer inside the structuneafe).

If your DLL has functions with these types of parameters, then your DLL cannot use glue
code automatically generated at load time. You can useeherate DLL Glue Source
command to generate glue code and then modify it in the following manner.

1. Before the call ttnvokelndirectFunction ,

a. Save the hidden pointer in a local variable.

b. Replace the hidden pointer with a 16-bit alias by calliftg:16BitAlias
2. After the call tanvokelndirectFunction ,

a. Free the 16-bit alias by callifgee16BitAlias

b. Restore the hidden pointer with the value you saved in step 1.

For the function$ andg, the glue code that LabWindows/CVI generates looks like the
following excerpt:

int f(char **ptrs)
{
int retval;
unsigned short cw387;

cw387 = Get387CW();
retval = (int) InvokelndirectFunction(__static_f, ptrs);
Set387CW(cw387);
return retval;
}
int g(struct x *ptr)
{
int retval;
unsigned short cw387;

LabWindows/CVI Programmer Reference Manual 4-18 © National Instruments Corporation

Chapter 4 Windows 3.1 Compiler/Linker Issues

cw387 = Get387CW();

retval = (int) InvokelndirectFunction(__static_g, ptr);
Set387CW(cw387);

return retval;

}

After you make the necessary changes, the code should appear as follows:

/* Assume NUM_ELEMENTS is the number of pointers in the input */
[* array. Assume ITEM_SIZE is the number of bytes pointed */
/* to by each pointer. If you do not know ITEM_SIZE, butyou */
/* know that it is 64K or less, you can use 64K as ITEM_SIZE. */

int f(char **ptrs)

{
int retval;
unsigned short cw387;
inti;

char *savedPointersfINUM_ELEMENTS];

/* change the pointers to 16-bit far pointers */
for i=0 ;i< NUM_ELEMENTS; i++) {
savedPointers]i] = ptrsil;

if (Alloc16BitAlias(ptrsli], ITEM_SIZE, &ptrs[i]) == -1) {
[* failed to allocate an alias; restore */
[* pointers. */
while (i--)
ptrs[i] = savedPointer]i];
return < errorcode >;
}

}
cw387 = Get387CW();

retval = (int) InvokelndirectFunction(__static_f, ptrs);
Set387CW(cw387);

/* Restore the pointers. */

for i=0;i<NUM_ELEMENTS; i++) {
Freel6BitAlias(ptrs[i], ITEM_SIZE);
ptrs[i] = savedPointers]i];

}

return retval;

© National Instruments Corporation 4-19 LabWindows/CVI Programmer Reference Manual

Chapter 4 Windows 3.1 Compiler/Linker Issues

int g(struct x *ptr)

{
int retval;
unsigned short cw387;
char *savedPointer;

savedPointer = ptr->name;
if (Alloc16BitAlias(ptr->name, ITEM_SIZE, &ptr->name) == -1)
return < error code >;

cw387 = Get387CW();
retval = (int) InvokelndirectFunction(__static_g, ptr);
Set387CW/(cw387);

Freel6BitAlias(ptr->name, ITEM_SIZE);
ptr->name = savedPointer;
return retval;

DLL Exports Functions by Ordinal Value Only

If your DLL does not export its functions by name, but by ordinal number only, you must
modify theGetProcAddress function calls in the glue code. Instead of passing the name of
the function as the second parameter, pas&s_WORD_AS POINTERXdinalNumber),
whereOrdinalNumber s the ordinal number for the function. For example, if the ordinal
number for the functiomstallCallback is 5, change the glue code as follows.

Generated Glue Code:
if (I(fp = GetProcAddress(DLLHandle,"InstallCallback™)))

{
funcname =" _InstallCallback";
goto FunctionNotFoundError;
}
Change to:
if (I(fp = GetProcAddress(DLLHandle, PASS_WORD_AS_POINTER(5))))
{
funcname ="_InstallCallback";
goto FunctionNotFoundError;
}

LabWindows/CVI Programmer Reference Manual 4-20 © National Instruments Corporation

Chapter 4 Windows 3.1 Compiler/Linker Issues

Recognizing Windows Messages Passed from a DLL

The normal way of communicating with a DLL is to call functions in the DLL. However,

cases exist where other communication methods are necessary. The most typical case is that
of an interrupt service routine in a DLL that must notify the application that the interrupt
occurred. In cases like this, you must communicate with the DLL through a callback function.

LabWindows/CVI recognizes messages posted by a DLL through the Windows SDK
functionPostMessage , and can initiate a user callback function. This method is useful

for hardware interrupts, but it is subject to the latency associated with Windows messaging.
LabWindows/CVI useRegisterwinMsgCallback , UnRegisterwinMsgCallback ,and
GetCVIWindowHandle to recognize Windows messages from a DLL. You can call these
functions from a module compiled in Watcom or from source code.

For complete information on these functions, refer to the function descriptions in Chapter 4,
User Interface Library Referengef theLabWindows/CVI User Interface Reference Manual

To use these functions, cBRkgisterwinMsgCallback andGetCVIWindowHandle . Pass

their return values, the message number and the window handle, to the DLL. When the DLL
sends a message, it catlsstMessage with these values. When LabWindows/CVI receives
the message, it calls the callback function.

Note LabWindows/CVI can receive the message only when it is processing events.
LabWindows/CVI processes events when it is waiting for user input. If the
program you run in LabWindows/CVI does not c&unUserinterface
GetUserEvent , orscanf , or if it does not return from a User Interface Library
callback, events will not be processed. You can remedy this in the program by
periodically calling the User Interface Library functioRrocessSystemEvents

Creating 16-bit DLLs with Microsoft Visual C++ 1.5

Be sure to consider the following issues or project options when you create a DLL with
Microsoft Visual C++ 1.5:

» Every function you call from outside the DLL mustfbe , exported, and must load the
data segment into the DS register. The function must load the DS register if you want to
use any non-local variables in a function.

» Use the large or huge memory model. The savings you gain by using smaller memory
models is not worth having to use the keyword throughout your code. This project
option is inCompiler»Memory Model»Segment Setup

* You can make the compiler load the data segment into the DS register automatically by
using theSS!=DS, DS loaded on function entrproject option icCompiler»Memory
Model»Segment Setup

» If you try to use the optimize entry code optidBL), by selecting
Compiler»Windows»Prolog/Epilog»Generate Prolog/Epilog Farit conflicts with the

© National Instruments Corporation 4-21 LabWindows/CVI Programmer Reference Manual

Chapter 4

Windows 3.1 Compiler/Linker Issues

/Au option. You can either not use this option by settingdaoe, or insert__loadds
in front of every function you export from the DLL.

You can make the compiler export a function by insertirexport between the return
type and the function name, or by adding the function name to the exports section of the
def file.

If you add the function name to the exports section ofife file, remember to convert
the name to all caps if you use #SCALcalling convention, or pre-append an
underscore if you use tt@DECLcalling convention.

Byte align structure members by choosinByte for theOptions»Project»Compilers»
Code Generation»Struct Member Byte Alignment

Creating 16-bit DLLs with Borland C++

Consider the following issues or project options when you create a DLL with
Borland C++ 4x:

Every function you call from outside the DLL mustfae , exported, and must load the
data segment into the DS register. The function must load the DS register if you want to
use any non-local variables in a function.

Use the large or huge memory model. The savings you gain by using smaller memory
models is not worth having to use the keyword throughout your code. This project
option is in16-bit CompilersMemory Model»Mixed Model Override.

You can make the compiler load the data segment into the DS register by setting the
project optionl6-bit Compiler»Memory Model»Assume SS Equals D® Never, or
by inserting loadds in front of every function you export from the DLL.

You can make the compiler export a function by insertitygort between the return
type and the function name, adding the function name to the exports sectionief the
file, or setting the optiot6-bit Compiler»Entry/Exit Code»Windows DLL, all
functions exportable

If you add the function name to the exports section ofife file, remember to convert
the name to all caps if you use #wSCALcalling convention, or pre-append an
underscore if you use tl@DECLcalling convention. Also, set the Generate Underscores
option inCompiler»Compiler Output.

Turn off the Allocate Enums as Ints optionGompiler»Code Generation
Set the Data Alignment options Byte in 16-bit Compiler»Processor.

Turn off the Case Sensitive Link and Case Sensitive Exports and Imports options in the
Linker»General.

Do not use the Linker Goodies optiond.inker»16-bit Linker .

LabWindows/CVI Programmer Reference Manual 4-22 © National Instruments Corporation

Chapter 4 Windows 3.1 Compiler/Linker Issues

DLL Search Precedence
LabWindows/CVI finds a DLL file in the following ways for Windows 3.1:

« Ifthe.dll fileis associated with.y file, LabWindows/CVI uses the following search
precedence to find the DLL.

1. Ifa.pth file with the samdull path name as th& file is in the project,
LabWindows/CVI uses the standard Windows DLL search algorithm.ptte
file must contain the name of thaéll file, such asnystuff.dll . It must
contain an absolute path or a simple filename.

2. Ifa.dl file with the samdull path name as thé file is in the project,
LabWindows/CVI uses the absolute path of #e file in the project to load
the.dll file.

3. Ifa.pth file with the same base name as fthe file is in the same directory as
the.fp file and alib or.obj file of the same base name does not exist in the
same directory, LabWindows/CVI uses the standard Windows DLL search
algorithm. Thepth file must contain the name of th@ll file, such as
mystuff.dll . It must not contain any directory names or slashes.

4. Ifa.dll file with the same base name as fhe file is in the same directory as
the.fp file, LabWindows/CVI loads thalll file as long as ndib , .obj
or .pth file of the same base name appears in the same directory.

5. Ifa.pth or.dl file does not appear in the same directory asfphefile,
LabWindows/CVI uses the standard Windows search algorithm to look for a
DLL with the same base name as fipe file. Thus, if a DLL with the same base
name is in thevindows or windows\system directory or a directory listed in
your PATHenvironment variable, LabWindows/CVI finds it.

DLLs for VXIplug&play drivers are not in the same directory as.the files, but the
directory that contains the DLL is listed in thaTHenvironment variable. Therefore,
Step 5 makes it easier for you to use plib&play instrument driver DLLS in
LabWindows/CVI for Windows 3.1.

e Ifthe.dll fileis not associated with.fp file, LabWindows/CVI uses the following
search precedence to find the DLL:

1. Ifa.pth fileisinthe projectlist, LabWindows/CVI uses the standard Windows
DLL search algorithm. Thepth file must contain the name of tha#l file,
such asnmystuff.dll . It must contain an absolute path or a simple filename.

2. Ifthe.dll fileis in the project list, then LabWindows/CVI uses the absolute
pathname to find thelll file.

© National Instruments Corporation 4-23 LabWindows/CVI Programmer Reference Manual

Chapter 4 Windows 3.1 Compiler/Linker Issues

e If you callLoadExternalModule ~ on thedll file, then
— If you specify it with an absolute pathname, LabWindows/CVI loads that file.

— If you specify it with a relative pathname, LabWindows/CVI searches fodithe
file in the following places and order indicated.

In the project list.

2. Inthe directory in which the project file is located.
3. Among other modules already loaded.
4. In the directories specified in the documentation for the Windows SDK

LoadLibrary function. In this case, the include file for the DLL must be in
the project or in one of the include paths you specify innbhide Paths
command in th®©ptions menu of the Project window.

LabWindows/CVI Programmer Reference Manual 4-24 © National Instruments Corporation

UNIX Compiler/Linker Issues

This chapter describes the kinds of compiled modules available under LabWindows/CVI1 for
UNIX and includes programming guidelines for modules you generate with external
compilers.

Calling Sun C Library Functions

You can call functions in the Sun Solaris C libraries from source code in LabWindows/CVI.
LabWindows/CVI automatically links your program to the following static libraries, located
in the/usr/lib directory, when you build the project.

Solaris 1:libm.a, libc.a
Solaris 2libsocket.a, libnsl.a, libintl.a, libm.a, libc.a

When you create a standalone executable, LabWindows/CVI invokes the Sun Solaris link
editor (d) to link your program to the LabWindows/CVI dynamic library and to the system
libraries. By default, the Sun Solaris link editor uses the dynamic versions of the libraries.
LabWindows/CVI passes the following linking options to the Sun Solaris link editor:

Solaris 1:-Im -ldl -lc
Solaris 2:-Isocket -Insl -lintl -Im -Ithread -Ic

In general, you can use the header files that Sun provides for these libraries in the
fusr/include directory. For the ANSI C functions, however, use the header files that come
with LabWindows/CVI.

Restrictions on Calling Sun C Library Functions

You cannot call any Sun C Library function that uses data types incompatible with the
LabWindows/CVI compiler or libraries. In particular, you must not call functions that use the
long double datatype. In LabWindows/CVItheng double data type has 8 bytes, but the
Sun libraries expect a 16-byte object.

Under Solaris 2, you must not call any function that uselmige long data type.
LabWindows/CVI does not recognize this non-ANSI type.

© National Instruments Corporation 5-1 LabWindows/CVI Programmer Reference Manual

Chapter 5

UNIX Compiler/Linker Issues

Using Shared Libraries in LabWindows/CVI

In the LabWindows/CVI development environment, you can link your programs to static
libraries, but not to shared libraries. If you have to use a shared library, you must use the Sun
Solaris linker [d) to build your application. Refer to ti@¥eating Executables that Use the
LabWindows/CVI Librariesection later in this chapter for more information on using

external compilers and the Sun linker.

If you have both shared and static versions of a library, you can develop and debug your
application in the LabWindows/CVI development environment using the static version of the
library. You can then create your final executable with the Sun linker using the shared version
of the library.

Using dlopen

The Sun Solaridlopen function allows you to load shared libraries from your program
dynamically. Although this function can work in some cases when running in
LabWindows/CVI, it can make LabWindows/CVI unstable. If youdisgen to load shared
libraries in a program you run in LabWindows/CVI, the shared libraries might link to the
system libraries the LabWindows/CVI environment uses. As a result, functions in the shared
library might modify the LabWindows/CVI environment and cause unpredictable behavior.

The LabWindows/CVI Run-Time Engine

as d

Shared Library

The LabWindows/CVI development environment contains many built-in libraries such as the
User Interface Library and Utility Library. LabWindows/CVI also provides these libraries in
the form of a standalone shared library called the LabWindows/CVI Run-time Engine. All
executables that call LabWindows/CVI library functions use the Run-time Engine shared
library. This is true whether you build the executable in the LabWindows/CVI development
environment or with an external compiler and the Sun Solaris linker.

LabWindows/CVI Programmer Reference Manual 5-2 © National Instruments Corporation

Chapter 5 UNIX Gompiler/Linker Issues

Creating Executables that Use the
LabWindows/CVI Libraries

You can build executables that use the LabWindows/CVI libraries in two ways:

* You can build an executable in the LabWindows/CVI development environment by
selecting th&€reate Standalone Executableommand in th8uild menu of the Project
window. When you do so, LabWindows/CVI invokes the Sun Solaris litkgrt¢ link
your programs to the Run-time Engine shared library.

* You can use an external compiler and linker to create an executable that uses the
Run-time Engine shared library. Use the Generate Makefile commandBoitienenu
of the Project window to generate a UNIX makefile that corresponds to the currently
loaded project and libraries. The makefile invokes an external compiler to compile your
source files, and then it invokes the Sun Solaris linkerto link the compiled files with
the Run-time Engine shared library.

Compatible External Compilers

You can use the following external ANSI C compilers to compile source files for linking with
the LabWindows/CVI Run-time Engine shared library.

« GNU C Compiler gcc)
e Sun C Compilerdc andacc)

Note Under Solaris 2.4, when linking the LabWindows/CVI Shared Library with
external ANSI C compiler, the compiler displays a warning that states the shared
library has an invalid type. You can ignore this warning.

Static and Shared Versions of the ANSI C and Other Sun Libraries

When you build a project for execution in the LabWindows/CVI development environment,
LabWindows/CVI links your program to ttetaticversions of the Sun Solaris libraries

(libc.a andlibm.a). On the other hand, when you create a standalone executable in the
LabWindows/CVI development environment, LabWindows/CVI invokes the Sun Solaris link
editor (d) to link your program to theharedversions of the librariedifc.so and

libm.so). Similarly, when you generate a UNIX makefile by invoking @enerate

Makefile command from thBuild Menu of the Project window, the makefile contains linker
commands to use the shared versions of the libraries.

Thus, when you run your programs as executables, you use a different version of the Sun
libraries (including the ANSI C library) than when you run them in the LabWindows/CVI
development environment. Your program might exhibit slightly different behavior as a
standalone executable than when run in the development environment.

© National Instruments Corporation 5-3 LabWindows/CVI Programmer Reference Manual

Chapter 5 UNIX Compiler/Linker Issues

Non-ANSI Behavior of Sun Solaris 1 ANSI C Library

The C library that comes with Sun Solaris 1 (SunOSdbes not comply with the ANSI C
standard as follows:

¢ Some ANSI C functions are missing from the library.
e Some library functions have different behavior than the ANSI standard specifies.

LabWindows/CVI corrects these problems by adding a libliatyix.a , that

replaces and supplements the Sun Solaris library as necessa®plaitie 1 ANSI C Library
Implementatiorsection contains more information about how LabWindows/CVI provides an
ANSI C library on Solaris 1.

LabWindows/CVI Implements printf and scanf

Although the Sun Solaris libraries provide the ANSI C family of functions for formatted input
and outputgcanf , printf , and others), LabWindows/CVI provides special versions of
these functions for the following reasons:

e The LabWindows/CVI versions of these functions provide run-time error checking not
available with Sun Solaris versions.

e The Sun Solaris 1 version of these functions do not comply fully with the ANSI C
standard.

* The Sun Solaris versions of these functions do not work with the LabWindows/CVI
implementation of the long double data type.

For standalone executables, these functions come in a separate static library,

libeviprintf.a , inthelib subdirectory of the LabWindows/CVI installation directory.
When you create an executable in LabWindows/CVI, LabWindows/CVI links your program
to this static library.

Main Function Must Call InitCVIRTE

If your program calls any functions from the LabWindows/CV!I libraries, you must call
INitCVIRTE to initialize the libraries from the executable. This function takes three
arguments. The first and third arguments to this function must always be 0 for UNIX
applications. The second must be the same value as the second parametenafiyour
function.InitCVIRTE returns O if it fails.

You do not have to calhitCVIRTE when you run your program in the LabWindows/CVI
development environment because LabWindows/CVI always initializes the libraries.
However, if you do not calhitCVIRTE , your executable cannot work. For this reason,

LabWindows/CVI Programmer Reference Manual 5-4 © National Instruments Corporation

Chapter 5 UNIX Gompiler/Linker Issues

National Instruments recommends that you always include source code similar to the
following example in your program.

int main(int argc, char *argv[])

{
if (InitCVIRTE(O, argv, 0) ==0) {
return 1;/* Failed to initialize */
}
/* your program code here */
}

If you passNULL for the second argument kGtCVIRTE , your program might still work,
but with the following limitations:

* Your executable cannot accept thisplay = command line argument. As a result, you
cannot specify an X display on the command line for your program to use. You still can
use theDISPLAY environment variable to specify a different X display.

o LoadPanel , LoadExternalModule , DisplaylmageFile , SavePanelState ,
RecallPanelState , and other functions that normally use the directory of the
executable to search for files, use the current working directory instead. If you run the
executable from a directory other than the one that contains your executable, some of
these functions might fail to find files.

Run State Change Callbacks Are Not Available in Executables

When you use a compiled module in LabWindows/CVI, you can arrange for
LabWindows/CVI to notify it of a change in execution status (start, stop, suspend, resume).
You do this through a function calledRunStateChangeCallback . TheNotification of
Changes in Run Stasection, in Chapter 2Jsing Loadable Compiled Moduledescribes

this in detail.

The run state change callback capability in LabWindows/CVI is necessary because when you
run a program in the LabWindows/CVI development environment, it executes as part of the
LabWindows/CVI process. When your program terminates, the operating system does not
release resources as it does when a process terminates. LabWindows/CVI releases as many
resources as it can, but your compiled module might have to do more. Also, if the program
suspends for debugging purposes, your compiled module might have to disable interrupts.

When you run a standalone executable, it always executes as a separate process. Thus, the rur
state change callback facility is not necessary and does not work. External compilers report
link errors when you define RunStateChangeCallback in more than one obiject file. If

you require a run state change callback in a compiled module that you intend to use both in
LabWindows/CVI and an external compiler, National Instruments recommends that you put
the callback function in a separate source file and create a likrgrpgtead of an object file.

© National Instruments Corporation 5-5 LabWindows/CVI Programmer Reference Manual

Chapter 5 UNIX Compiler/Linker Issues

Using Externally Compiled Modules

In general, you can load objects compiled with the Sun compilers and thg&Ndmpiler
into LabWindows/CVI, with a few restrictions.

Restrictions on Externally Compiled Modules
You can use externally compiled modules with the following restrictions:

« The objects must not use any data types that are incompatible with the LabWindows/CVI
compiler or libraries. Incompatible data types include the following:

— long double with any Sun compilers. A Sun compiler implemdatg double
as a 16-byte object, but LabWindows/CVI implements it as an 8-byte object.

— long long with the Solaris 2 Sun compiler. LabWindows/CVI does not support this
non-ANSI type.

— Any enumeration type. Many compilers implement enumeration types with different
sizes and values.

¢ You cannot load a Solaris 2 object file when you run LabWindows/CVI under Solaris 1.
However, you can load Solaris 1 objects when you run under Solaris 2.

Compiling Modules With External Compilers

You can compile external modules using LabWindows/CVI header files instead of the headers
the compiler supplies. To compile this way, you must define the preprocessor macro
_NI_sparc_ to the valud for Solaris 1 or to the valugfor Solaris 2.

When using the Sun ANSI C compiler, usethédlag to add the LabWindows/CVI include
directory to the search list, as shown in the following command lines:

Solaris 1: acc -Xc -I/home/cvi/include -D_NI_sparc_=1 -c mysource.c

Solaris 2: cc -Xc -I/lhome/cvi/include -D_NI_sparc_=2 -¢ mysource.c

When using the GNU compiler, use thestdinc flag to disable the standard include files
and thel flag to add the LabWindows/CVI include directory to the search list. Also, you
must use theansi flag. For example, to compile the filgysource.c using
LabWindows/CVI headers under Solaris 1, use the following command line.

gcc -ansi -nostdinc -I/home/cvi/include -D_NI_sparc_=1 -c mysource.c

You might see warnings about conflicting types for the built-in functesacmpand
memcpy, but you can ignore them.

Note These examples assume thiadme/cvi/include is the LabWindows/CVI
header files directory. The actual path depends on how you install your copy of
LabWindows/CVI.

LabWindows/CVI Programmer Reference Manual 5-6 © National Instruments Corporation

Chapter 5 UNIX Gompiler/Linker Issues

You cannot use the non-ANSI C Sun compitebecause it does not recognize some ANSI C
constructs in the header files, such as function prototypes and the keywvatdsvoid , and
volatile

Locking Process Segments into Memory Using plock()

You can use the UNIX functigslock to lock the text and data segments of your program
into memory. However, this function locks all segments of the LabWindows/CVI process, not
just the segments associated with your program. Also, because the text segments of
LabWindows/CVI programs actually reside in the data segment of the LabWindows/CVI
process, you must lock both text and data segments, plsatkPROCLOCK) , in order to

lock all text into memory.

Note Your LabWindows/CVI process must have superuser privileges to uspltiet
function.

UNIX Asynchronous Signal Handling

The following signals have special meaning in LabWindows/CVI:

* SIGPOLL (SIGIO) and SIGPIPE —The LabWindows/CVI TCP Library installs
signal handlers fa8IGPOLL (SIGIO) andSIGPIPE . If you use the TCP Library and you
want to install handlers for these signals, you must call the LabWindows/CVI handlers
when your handlers are called. If you attempt to set the signal hanglex_toFL for
these signals while running in the LabWindows/CVI environment, LabWindows/CVI
restores its own handlers.

» SIGINT and SIGQUIT —Normally, the operating system generates these two signals
when you type certain keystrokes (<Ctrl-C> and <Ctrl-\>) in the window from which
you invoke LabWindows/CVI. If one of these signals occurs while your program is
running and you have not installed a handler for it, LabWindows/CVI suspends
your program the next time it calls a function that processes events (such as
ProcessSystemEvents). If your program does not call any event-processing
functions, it continues to run.

e SIGTERM—LabWindows/CVI treatSIGTERMas a stronger version 8fGINT and
SIGQUIT. If this signal occurs while your program is running and you have not installed
a handler for it, LabWindows/CVI terminates the program, gives you a chance to save
your files, and exits. ISIGTERMoccurs when no program is running, LabWindows/CVI
exits immediately.

* SIGBUS, SIGFPE, SIGILL, and SIGSEGV—These signals exist to allow for
hardware exceptions. Because execution cannot continue beyond the instruction that
caused the exception, LabWindows/CVI always catches these signals. If this signal
occurs while your program is running, LabWindows/CVI reports a fatal run-time error

© National Instruments Corporation 5-7 LabWindows/CVI Programmer Reference Manual

Chapter 5

UNIX Compiler/Linker Issues
and suspends operation at the statement that caused the exception. If this signal occurs
when no program is running, LabWindows/CVI exits immediately.

You cannot ussignal , sigaction ,sigset , orsigvec to make your program ignore the
signals this section lists.

Note If your program begins to loop indefinitely, you can often suspend execution by

sending a signal to the LabWindows/CVI process as follows:

1. Use theps command to identify the process number of LabWindows/CVI.

2. Send th&ill -SIGNAL pid command to that process. For example, if the
LabWindows/CVI process number is 3478, the comm&iidINT 3478
sends theSIGINT signal to LabWindows/CVI. When you want to suspend
execution of your program in LabWindows/CVI, try usirglGINT or SIGQUIT.
If sending theSIGINT or SIGQUIT signal fails, you must use the stronger
SIGTERMsignal, which terminates not just your program but also
LabWindows/CVI.

Note Some signals can cause LabWindows/CVI to dump core you are running a

program that does not install handlers for them.

Solaris 1 ANSI C Library Implementation

The C library that comes with Sun Solaris 1 (SunOSidbes not comply with the ANSI C
standard as follows:

¢« Some ANSI C functions are missing from the library.
« Some library functions have different behavior than the ANSI standard specifies.

LabWindows/CVI corrects these problems by linking your programs to a supplemental C
library libcfix.a , Which is in thdib subdirectory of the LabWindows/CVI installation
directory. This library contains replacement functions for some Sun Solaris functions and for
the ANSI functions that are not available in the Sun Solaris library. The names of the
replacement functions differ from the Sun Solaris function names and do not interfere with
programs or libraries that depend upon the non-ANSI behavior of some Sun Solaris functions.
The LabWindows/CVI ANSI header files contain macro definitions for the replacement
functions. When you compile with the LabWindows/CVI headers, your program references
the LabWindows/CVI replacement functions instead of the Sun Solaris versions.

Consider the case dofalloc , which LabWindows/CVI replaces withvi_realloc . The
Sun Solaris 1 implementation of thealloc ~ function fails when the first argument is
NULL. The ANSI standard requires thatlloc accept NULL as a first argument. In the
library libcfix.a , LabWindows/CVI definescvi_realloc , which treats a NULL
argument as the ANSI standard prescribes. The LabWindows/CVI headeatiifile

LabWindows/CVI Programmer Reference Manual 5-8 © National Instruments Corporation

Chapter 5 UNIX Gompiler/Linker Issues

contains the following macro definition so thati_realloc replaces all references to
realloc in your program.

#define realloc _cvi_realloc

Note Obiject files you previously compiled using either older LabWindows/CVI headers
or Sun Solaris headers do not reference the replacement functions. You must
recompile your object files using LabWindows/CVI headers to obtain
ANSI-compliant behavior.

The following lists show the complete contents of the supplemental C lithrzfiy/a

Replacement Functions

Name Header Non-ANSI Behavior of Sun Version
_cvi_fflush stdio.h Does not handle NULL argument properly.
_cvi_fopen stdio.h Does not support binary open mode ("b").

Append open mode ("a") incorrect.
_cvi_freopen stdio.h Same as fopen.
_cvi_realloc stdlib.h Does not handle NULL argument properly.
_cvi_strtol stdlib.h Does not set errno B®RANGEN error.
_cvi_system stdlib.h Does not handle NULL argument properly.
matherr Default behavior prints error message.

Additional Functions Not Found in Sun Solaris 1 libc

_assert (used byassert() macro inassert.h)
labs
srand
fsetpos
fgetpos
atexit
difftime
div

Idiv

fpos
memmove
raise
rand
strerror
strtoul

© National Instruments Corporation 5-9 LabWindows/CVI Programmer Reference Manual

Chapter 5

UNIX Compiler/Linker Issues

Incompatibilities among LabWindows/CVI,
Sun Solaris, and ANSI C

Under the ANSI C standard, the programmer who implements the library chooses how certain
functions behave. As a result, two implementations of a function can behave differently and
still conform to the ANSI standard. Because LabWindows/CVI now uses the Sun Solaris C
library, incompatibilities arise from the following sources:

Differences between LabWindows/CVI and the ANSI standard
Differences between LabWindows/CVI and the Sun Solaris standard

This section outlines these incompatibilities.

Note

None of these incompatibilities interfere with development of projects and
standalone executables in LabWindows/CVI for Sun.

Between LabWindows/CVI and ANSI C

The following incompatibilities exist between LabWindows/CVI and ANSI C:

LabWindows/CVI for Solaris 1 defineize_t as a signed integer instead of an
unsigned integer as the ANSI C standard requires. National Instruments uses the
signed integer definition to make LabWindows/CVI compatible with the Sun Solaris
header files.

LabWindows/CVI for Solaris 1 uses the Sun Solaris version of the ANSI function
strftime , which incorrectly interprets th&sWcontrol string as the one-based week
number instead of the zero-based week number as ANSI specifies.

In LabWindows/CVI for Solaris Iyngetc works improperly in certain cases:
-fsetpos fails to erase all memory of pushback charactersbgtc .

-ungetc does not clear the end-of-file indicator on success.

-ungetc fails in certain cases after reading to the end of a file.

In LabWindows/CV!I for Solaris 1, signal handlers you install withstheal function
remain installed after invocation of the handler. The ANSI standard specifies that these
handlers be removed before they are invoked.

In standalone executables LabWindows/CVI creates for Solaris 1, the fusiation

and the macrassert do not terminate the program if you install a signal handler for the
SIGABRTsignal and the handler returns rather than caliimgmp . The ANSI standard
specifies that the program terminate in these cases.

Under some versions of Sun Solaris 2 (for example, Solaris 2.5), the ANSI function
setlocale does not work properly when running programs in the LabWindows/CVI
development environment. LabWindows/CVI links programs in the development
environment to the Sun Solaris static librlitsg.a , which contains a limited version

LabWindows/CVI Programmer Reference Manual 5-10 © National Instruments Corporation

Chapter 5 UNIX Gompiler/Linker Issues

of setlocale . In contrast, LabWindows/CVI links standalone executables to the shared
library libc.so , which contains the fully functional version s#ftlocale

Between LabWindows/CVI and Sun Solaris
The following incompatibilities exist between LabWindows/CVI and Sun Solaris:

LabWindows/CVI does not support thueag long data type some header files on
Solaris 2 use. In LabWindows/CVI, you cannot use that data type or call functions that
use that data type.

LabWindows/CVI implements the data tyjpeg double as an 8-byte object, in the
same way that it implemendsuble . Sun Solaris implementsng double as a
16-byte object. As a result, Sun Solaris functions thatongelouble ~ do not work
properly in LabWindows/CVI.

The LabWindows/CVI implementation of tpeintf andscanf family of functions
does not support the Sun Solaris implementatidongfdouble

LabWindows/CVI does not support wide character constantsa(t) of the form

L'ab'

The data typepgnp_buf andsigjmp_buf that the header filsetimp.h defines are
different for LabWindows/CVI and Sun Solaris. The LabWindows/CVI versions of these
buffers are larger than the Sun Solaris versions because LabWindows/CVI stores
additional debugging information in them. As a result, you must be careful when you use
jmp_buf andsigimp_buf objects among multiple files. In particular, if you compile a
file in LabWindows/CVI with debugging enabled and the file ss&i;mp orlongjmp

then your program must include the LabWindows/CVI versiosetpfip.h to handle
those functions correctly. The same is truesfgimp_buf , sigsetimp , and

siglongjmp

© National Instruments Corporation 5-11 LabWindows/CVI Programmer Reference Manual

Building Multiplatform
Applications

This chapter contains guidelines and caveats for writing platform-independent
LabWindows/CVI applications. LabWindows/CVI currently runs under Windows 3.1
and Windows 95/NT for the PC, and Solaris 1 and Solaris 2 for the SPARCstation.

One major feature of LabWindows/CV!I is that it supports multiplatform programming.
Following a few simple guidelines assures the portability of a LabWindows/CVI application:

Write code in strict ANSI C.

Observe and repair all LabWindows/CVI compile, link, and run-time diagnostics.
Avoid using system dependent calls when possible.

Avoid using non-portable image formats and fonts in your user interface.

Multiplatform Programming Guidelines

LabWindows/CVI is portable because it uses ANSI C program files, LabWindows/CVI User
Interface Resource files, and National Instruments libraries.

You must segregate any platform dependent code in your source code using conditional
preprocessor directives. You can use the built-in macros, sudi asswin32_

NI_mswin16_ , NI_mswin_ , NI_unix_ and_NI_sparc_ . More information on the

macros that LabWindows/CVI automatically defines is available iiCtrapiler Defines
section of Chapter 1L,abWindows/CVI Compiler

Library Issues

Avoid using Windows 32-bit SDK functions unless you intend your LabWindows/CVI
application to run only under Windows 95/NT.

Thesopen andfdopen functions are available only under Windows. Avoid using them
unless you intend your LabWindows/CVI application to run only under Windows.

Avoid using UNIX host system library calls suchi@gl ,fcntl , and so on, unless you
intend the LabWindows/CVI application to run only under UNIX. Refer tdsieg the

© National Instruments Corporation 6-1 LabWindows/CVI Programmer Reference Manual

Chapter 6

Building Multiplatform Applications

Low-Level I/O Functionsection in Chapter LabWindows/CVI Compileof this manual,
for more information on how to use system library calls.

Under UNIX, the low-level I/O functionspen, close ,read , write ,Iseek , andeof are
available in the UNIX C library. Refer to thésing the Low-Level I/O Functiorsction
Chapter 1] abWindows/CVI Compileof this manual, for more information on how to use
UNIX C low-level functions. These functions are portable to Windows if you include
lowlvlio.h in your Windows application.

In general, the ANSI C, User Interface, Analysis, Formatting and I/O, Utility, GPIB, VXI,
RS-232, and TCP libraries are portable across platforms. However, a few functions are not
multi-platform. The majority of these functions are in the Utility Library. The documentation
and function panels for the non-portable functions contain notes that list the platforms to
which they apply.

Only LabWindows/CVI for Windows has DDE, Data Acquisition, and Easy I/O for DAQ
libraries. The X Property Library is available only under UNIX. The ActiveX Automation
Library is available only under Windows 95/NT.

Although LabWindows/CVI provides the TCP Library on all platforms, you are responsible
for ensuring that the system has hardware and software support for the TCP server.

Various processor architectures store integers and floating point numbers in different byte
order. To circumvent these inconsistencies, usgthenodifier in the Formatting and 1/0
Library to describe the byte ordering of device data.Am#Scan function, use thép]

modifier to describe the byte ordering for the buffer that contains the raw device data. Do not
use thgo] modifier on the buffer that holds the data in the byte ordering of the host
processor. For example, if you use a GPIB instrument that sends two-byte binary data in Intel
byte order, use the following code:

short instr_buf[100];

short prog_buf[100];

status = ibrd (ud, instr_buf, 200);

Scan (instr_buf, "%100d[b2001]>%2100d[b2]", prog_buf);

If you use a GPIB instrument that sends two-byte binary data in Motorola byte order, use
Scan as shown in the following example:

Scan (instr_buf, "%100d[b2010]>%100d[b2]", prog_buf);

In either case, use tli@ modifier only on the buffer that contains the raw data from the
instrumentipstr_buf). LabWindows/CVI ensures that the program buffesd buf)
uses the proper byte order for the host processor. For a full descriptiorjajf theodifier,
refer to Chapter Formatting and 1/O Libraryof theLabWindows/CVI Standard Libraries
Reference Manual

LabWindows/CVI Programmer Reference Manual 6-2 © National Instruments Corporation

Chapter 6 Building Multiplatform Applications

Externally Compiled Modules

Although you can use externally compiled modules in LabWindows/CVI as this manual
describes, the best medium for application portability is ANSI C source code. Object modules
are not directly portable from one platform to another because the object file formats on the
various platforms differ.

For example, the object file formats are different among Windows 3.1, Windows 95/NT, and
UNIX systems. Although SPARCstations have the same computer architecture, Solaris 1.
(Sun OS 4) and Solaris Z also use different object file formats that make object modules
non-portable even between these two systems.

To use an externally compiled module across platforms, you must recompile the source code
for the module with a compiler for the target system.

Multiplatform User Interface Guidelines

Function panel.fp) files are portable across platforms.

User Interface Resourcaii¢) files are portable across platforms.
Image file formats other than PCX¢x) are not portable.
Color hue and intensity differences between platforms are unavoidable.

The only fonts sure to be available on all platforms are the National Instruments fonts.
National Instruments fonts of the same name resemble each other stylistically from one
platform to another, although some relative size differences might exist. The National
Instruments Meta Fonts are of uniform size (height) relative to the rest of the user interface
and are the most portable family of fonts available. However, the width of the National
Instruments Meta Fonts might differ slightly from one platform to another. Allow for extra
space in the width of all control labels to assure consistent appearance.

You might find the User Interface library functio@stCtriBoundingRect
GetTextDisplaySize , andGetScreenSize useful in calculating and compensating for
font-size discrepancies between platforms.

The order in which LabWindows/CVI processes user interface events might differ between
Windows and UNIX platforms. This happens because of differences between the underlying
window management systems that LabWindows/CVI uses.

You must not assign the forward <Delete> key as a hot-key in your user interface, because
that key does not exist on all platforms.

© National Instruments Corporation 6-3 LabWindows/CVI Programmer Reference Manual

Creating and
Distributing Standalone
Executables and DLLs

This chapter describes how the LabWindows/CVI Run-time Engine, DLLs, externally
compiled modules, and other files interact with your executable file. This chapter also
describes how to perform error checking in a standalone executable program. You can
create executable programs from any project that runs in the LabWindows/CVI environment.

Introduction to the Run-Time Engine

With your purchase of LabWindows/CVI, you received Rwn-time Enginas part of your
distribution. The LabWindows/CVI Run-time Engine is necessary to run executables or use
DLLs you create with LabWindows/CVI, and it must be present on any target computer on
which you want to run your executable program. You can distribute the Run-time Engine
according to your license agreement.

Distributing Standalone Executables under Windows

Under Windows, you can bundle the LabWindows/CVI Run-time Engine with your
distribution kit using th€reate Distribution Kit command in th&uild menu of the
Project window, or you can distribute it separately by making copies of the Run-time Engine.

Minimum System Requirements for Windows 95/NT

To use a standalone executable or DLL that depends on the LabWindows/CVI Run-time
Engine, you must have the following:

e Windows 95, or Windows NT version 4.0 or later

» A personal computer with at least a 33 MHz 486 or higher microprocessor
* A VGA resolution or higher video adapter

* A minimum of 8 MB of memory

» Free hard disk space equal to 4 MB, plus space to accommodate your executable or DLL
and any files the executable or DLL requires

© National Instruments Corporation 7-1 LabWindows/CVI Programmer Reference Manual

Chapter 7 Creating and Distributing Standalone Executables and DLLs

No Math Coprocessor Required for Windows 95/NT

You do not have to have a math coprocessor or emulator to use the LabWindows/CVI
Run-time Engine under Windows 95/NT.

Minimum System Requirements for Windows 3.1

To run a standalone executable you create using LabWindows/CVI for Windows, you must
have the following:

* MS-DOS, version 3.1 or later
* Microsoft Windows operating system, version 3.1 or later

* A personal computer with at least a 25 MHz 386 or higher microprocessor. National
Instruments recommends a 33 MHz 486 or higher microprocessor.

A VGA resolution or higher video adapter
e A math coprocessor
¢ A minimum of 4 MB of memory

< Free hard disk space equal to 2 MB, plus space to accommodate your executable and any
files the executable requires

Math Coprocessor Software Emulation for Windows 3.1

To run a standalone executable you create using LabWindows/CVI for Windows 3.1, your
system must have a math coprocessor. LabWindows/CVI recognizes the following
coprocessor emulation programs.

* wemu387.386 from Watcom
¢ Q387 from Quickware

Distributing Standalone Executables under UNIX

TheCreate Distribution Kit command is not available with UNIX versions of
LabWindows/CVI. However, you can use one of several UNIX shell scripts img&®in

directory of the LabWindows/CVI installation directory to package your standalone programs
for distribution.

LabWindows/CVI Programmer Reference Manual 7-2 © National Instruments Corporation

Chapter 7 Creating and Distributing Standalone Executables and DLLs

Distributing Standalone Executables under Solaris 2

To use the System V software packaging utpikgmk to distribute executable programs
under Solaris 2, complete the following steps.

1. If your program loadsiir files with LoadPanel or loads external modules with
LoadExternalModule , use caution when you specify the filenames in calls to these
functions. If you use a relative path, the path is relative to the directory that contains
the executable. Refer to thecation of Files on the Target Machine for Running
Executables and DLLsection later in this chapter for more information.

2. Create a directory to contain your executable program and associated files. Structure the
directory exactly as you want it to appear after installation. Test your program by running
it from that directory.

3. From the directory that contains your executable program and associated files, execute
themakepkg shell scriptin thenisc/bin directory of the LabWindows/CVI installation
directory to create a distribution package. The script requires the following information
to build the package:

» Abbreviated package name that can have up to nine characters in the form
XYZmyapp

e Text name for the package

« Default installation base directory on the user's machine

» Directory to place the build package

The script requests the following information, which is optional:

e Company or vendor name for the package

* Name and path to a copyright notice file for the package

* Relative path and executable name to create as a symbolic link

4. Themakepkg script creates the following files and directory structure. In the following
paths,pkgname stands for the name of your application package.

pkgnamelinstall/copyright

pkgnamelinstall/postinstall

pkgnamelinstall/preremove

pkgname/pkginfo

pkgname/pkgmap

pkgnamelreloc/ pkgnamel contents of application directory

You can now place thegkgname directory and its contents onto your distribution media.

5. To run your executable, you must have the LabWindows/CVI Run-time Engine. You can
build the package for the LabWindows/CVI Run-time Engine by executikgcvirte
located in themisc/bin directory of the LabWindows/CVI installation directory. The

© National Instruments Corporation 7-3 LabWindows/CVI Programmer Reference Manual

Chapter 7

Creating and Distributing Standalone Executables and DLLs

makecvirte script prompts you to name the directory in which to place the completed
package. The package nam@liScvirte

To install or remove a package on a machine you must logantas You can then use
either of the following two methods to install or remove a package:

« Use the Software Management Teahtool located in theéusr/sbin directory
of your system.

* Use the following command to install a package:
pkgadd -d <path to package> pkgname
To remove a previously installed package, issue the following command:
pkgrm pkgname

Distributing Standalone Executables under Solaris 1
To distribute executable programs under Solaris 1, complete the following steps.

1.

If your program loads UIR files withbadPanel or loads external modules with
LoadExternalModule , use caution when you specify filenames in calls to these
functions. If you use a relative path, the path is relative to the directory that contains the
executable. Refer to thevcation of Files on the Target Machine for Running
Executables and DLLsection in this chapter for more information.

Create a directory containing your executable program and associated files. Structure the
directory exactly as you want it to appear after installation. To test your program, run it
from that directory.

Use the shell scripbakedist in themisc/bin directory to create a distribution
package. This script creates a compressed tar file that contains the directory you created
in Step 2 and a copy of the LabWindows/CVI Run-time Engine.

Make a copy of the installation scripgtSTALL.sample in themisc/bin directory and
customize it using the informationakedist provides. This installation script unpacks

a distribution package, creating a directory like the one you created in Step 2, and then
installs the LabWindows/CVI Run-time Engine. The installation script can install from
floppy disks or from the current directory.

If you want to distribute your program on floppy disks, use the shell sakafloppy

in themisc/bin directory to copy your installation script and distribution package to
floppy disks. If you want to distribute using some other method, such as anonymous FTP,
you must provide users with the package file thaltedist creates and the customized
installation script that extracts the files from the package.

You can use this method under Solaris 2 if you do not want to upkginé utility.

LabWindows/CVI Programmer Reference Manual 74 © National Instruments Corporation

Chapter 7 Creating and Distributing Standalone Executables and DLLs

Minimum System Requirements for UNIX

To run a standalone executable you create using LabWindows/CVI for UNIX, your system
must have the following:

e Sun SPARCstation

e Solaris Ix (SunOS 4.1.2 or higher) or Solaris 2.4 or higher
* Atleast 24 MB of RAM

* Atleast 32 MB of disk swap space

» Free hard disk space equal to 4 MB, plus space to accommodate your executable and any
files the executable requires

Translating the Message File

The message file, calleasgrt n.txt wherenis the version number of the Run-time Engine,

is a text file that contains the error messages that the Run-time Engine displays. It resides in
thebin directory of the Run-time Engine installation directory. You can translate the message
file into other languages. To translate the message file, perform the following steps.

1. Copy the file to another name so you have it as a backup.

2. Use atext editor to modifysgrt n.txt . Translate only the text that is inside quotation
marks. You must not add or delete any message numbers.

3. Execute theountmsg.exe orcountmsg utility on the file to encode it for use with the
Run-time Engine, as in the following example:

countmsg msgrt5.txt

Configuring the Run-Time Engine

This section applies to you, the developer, and the user of your executable program. Feel free
to use the text in this section in the documentation for your executable program.

Solaris 1 Patches Required for Running Standalone Executable

Executables you create using LabWindows/CVI do not run properly on some versions of
Solaris 1 (SunOS 4) unless you patch the dynamic lirksvlip/Id.so). For this

reason, you might have to patch the operating system on the machine on which you install
your standalone executable.

The required patches are available from Sun and also come with LabWindows/CVI. You can
either install the patch automatically using the installation script in the directory that contains
the patch, or you may install the patch manually by following the instructions that come with

© National Instruments Corporation 7-5 LabWindows/CVI Programmer Reference Manual

Chapter 7 Creating and Distributing Standalone Executables and DLLs

the patch. The required patches are available imibigpatch ~ subdirectory of the
LabWindows/CVI installation directory. The following patches are available:

+ Patch-ID #100257-06 for SunOS 4.1.3/4.1.3c
e Patch-ID #101743-02 for SunOS 4.1.3 U1l
+ Patch-ID #101783-02 for SunOS 4.1.1/4.1.2

Configuration Option Descriptions

The Run-time Engine recognizes various configuration options. Under Windows platforms,
the installation program for the Run-time Engine automatically sets the required
configuration options for you.

Refer to theHow to Set the Configuration Optiodsscussion in Chapter Configuring
LabWindows/CVIlof theLabWindows/CVI User Manu&br detailed instructions on how to
manually set configuration options on each platform for the LabWindows/CVI development
environment. Under UNIX, you set the Run-time Engine configuration options in the same
manner. Under Windows, you set the Run-time Engine configuration options in a similar
manner, but with the following differences:

e Under Windows 95/NT, set the configuration options in the Registry under the
following key:
HKEY_LOCAL_MACHINE\Software\National Instruments
\CVI Run-Time Engine\cvirte

e Under Windows 3.1, set the configuration options in th&t[n] section of the
win.ini file, wheren is the version of the Run-time Engine.

Note Under UNIX, changes to options do not take effect until you restart your X server
or issue thexrdb .Xdefaults =~ command.

cvirtx (Windows 3.1 Only)

Because executables load and execute the Run-time Engine under Windows 3.1, they must be
able to locate the Run-time Engine on the hard disk. Under Windows 3.1, executables find the
Run-time Engine usingvirt n, wheren is the version number of the Run-time Engine,
configuration option.

Assign the pathname of the Run-time Engine executable file tvithe n option in the
[cvit n] section ofwin.ini , as in the following example:

[cvirt5]
cvrts=c:\windows\system\cvirt5\cvirt5.exe

LabWindows/CVI Programmer Reference Manual 7-6 © National Instruments Corporation

Chapter 7 Creating and Distributing Standalone Executables and DLLs

cvidir (Windows Only)

Under Windows 95/NTevidir specifies the location of the directory that containsihe
andfonts subdirectories that the Run-time Engine requires. This Registry entry is necessary
to enable the Windows 95/NT Run-time Engine DLL to load. When you install the
LabWindows/CVI Run-time Engine under Windows 95/NT, the installation program places
thebin andfonts subdirectories in thevirte directory under the Windows system
directory. The installation program also createsctlidir entry in the Registry.

For Windows 3.1, set thevidir option only if the Run-time Engine resides in a directory
other than the directory that containsiive andfonts subdirectories. Set it to the directory
that contains thein andfonts subdirectories.

useDefaultTimer (Windows Only)

The LabWindows/CVI Run-time Engine recognizesuiseDefaultTimer option under
Windows platforms. It has the same effect as in the LabWindows/CVI development
environment. Refer to ChapterQ@onfiguring LabWindows/CYIn theLabWindows/CVI
User Manua] for more information onseDefaultTimer

DSTRules

The LabWindows/CVI Run-time Engine recognizesmi$aRules option. It has the same
effect as in the LabWindows/CVI development environment. Refer to Chafenfiguring
LabWindows/CV/lin theLabWindows/CVI User Manugdior more information

onDSTRules .

UNIX Options

The LabWindows/CVI Run-time Engine recognizesdttevate , appFont , dialogFont
editorFont , menuFont , messageBoxFont , useDefaultColors , useMetaKey , and

warpMouseOverDialogBoxes options under UNIX platforms. They have the same effect
as in the LabWindows/CVI development environment. Refer to ChapBarfiguring
LabWindows/CV/lin theLabWindows/CVI User Manugdior more information on these
options.

© National Instruments Corporation 7-7 LabWindows/CVI Programmer Reference Manual

Chapter 7

Creating and Distributing Standalone Executables and DLLs

Necessary Files for Running Executable Programs

In order for your executable to run successfully on a target computer, all files the executable
requires must be accessible. Your final distribution kit must contain all the necessary files to
install your LabWindows/CVI executable program on a target machine as shown in

Figure 7-1.
Executable LW/CVI Run-Time Engine
startup code AN program AN
execution
compiled support
source code
memory
instrument management
driver code
built-in
.obj's or .0's CVI Libraries
lib's or.a's
application
name & icon
resource
AN
DLLs external external other
& lib's or .obj's or files
PTHs .a's .0's

Figure 7-1. Files Necessary to Run a LabWindows/CVI Executable Program on a Target Machine

Executable—This file contains a precompiled, prelinked version of your
LabWindows/CVI project and any instrument driver program files that you link to your
project. It also contains the application name and icon resource to register to the
operating system. The executable has an associated icon on which you can double-click
to start the application. When the executable starts, it loads the Run-time Engine. Under
UNIX, the executable returns the value timain returned or the value you passed

to exit

Run-time Engine—The Run-time Engine contains all the built-in library, memory, and
program execution code present in the LabWindows/CVI environment, without all the
program development tools such as the source editor, compiler, debugger, and user
interface editor. The Run-time Engine is smaller than the LabWindows/CVI environment
and thus loads faster and requires less memory. You use only one copy of the Run-time
Engine on each target machine even when you have multiple executhizes.

LabWindows/CVI Programmer Reference Manual 7-8 © National Instruments Corporation

Chapter 7 Creating and Distributing Standalone Executables and DLLs

Windows 95/NT, the Run-time Engine consists of multiple files, including three DLLs
and the low-level support driver. Under Windows 3.1, the Run-time Engine is an
execute-only version of the LabWindows/CVI environment. Under Sun Solaris, the
Run-time Engine is a shared library

» UIR files—The User Interface Resource files that your application program uses. Use
LoadPanel andLoadMenuBar to load these files.

« Image files—The graphical image files that you programmatically load and display on
your user interface usirjsplaylmageFile

» State files—The user interface panel state files that you save SsivePanelState
and load usingrecallPanelState

e DLL files —(Windows Only) the Windows Dynamic Link Library files that your
application program uses.

e PTH files—(Windows 3.1 Only) specify the location of DLL files when you want to
load the DLL from a special directory, or indicate that you want to find a DLL using
the standard Windows DLL search algorithm.

» External .lib or .a fles—Compiled 32-bitlib files on the PC om files under UNIX
that you load usingoadExternalModule and that you have not listed in the project.

» External .objor .o files—Compiled 32-bitobj files onthe PC oo files under UNIX
that you load usingoadExternalModule and that you have not listed in the project.

e Other files—Files your executable opens usimgn, fopen , OpenFile , and so on.

Necessary Files for Using DLLs Created
in Windows 95/NT

Under Windows 95/NT, you can distribute DLLs that use the LabWindows/CVI Run-time
Engine. As in the case of standalone executables, you must distribute them along with the
LabWindows/CVI Run-time Engine.

Location of Files on the Target Machine for Running
Executables and DLLs

To assure proper execution, it is critical that all files associated with your executable program
are in the proper directories on the target machine. On the PC, you specify these files in a
relative directory structure in the dialog box that appears when you Seésie

Distribution Kit from theBuild menu of the Project window in LabWindows/CVI. Refer to

the LabWindows/CVI User Manuébr details. This section describes the proper location of
each of the files shown in Figure 7-1.

© National Instruments Corporation 7-9 LabWindows/CVI Programmer Reference Manual

Chapter 7 Creating and Distributing Standalone Executables and DLLs

LabWindows/CVI Run-Time Engine under Windows 95/NT

Table 7-1 shows the files that comprise the LabWindows/CVI Run-time Engine for

Windows 95/NT.
Table 7-1. LabWindows/CVI Run-Time Engine Files
Run-Time Engine File Description
cvirt.dll Helper DLL
cvirte.dll Contains most LabWindows/CVI libraries
cviauto.dll Contains ActiveX Automation Library
cvigsvxd.vxd Low-level support driver for Windows 95
cvintdrv.sys Low-level support driver for Windows NT
msgrt n.txt Contains text messagesis Run-time Engine version number
cvirt n.rsc Contains binary resourcesjs Run-time Engine version
number
ni7seg.ttf Font description file
nisystem.tf Font description file

These files come on a separate diskette, or in a separate directory in the CD-ROM. The
LabWindows/CVI installation program installs the files along with the development
environment. Th€reate Distribution Kit command in th&uild menu of the Project
window can bundle the Run-time Engine DLLs and drivers into your distribution kit. Also,
you can make copies of this diskette, or the CD-ROM directory, for separate distribution.

Run-Time Library DLLs

The installation program always places the Run-time Engine DLLs in the Wirglstas
directory under Windows 95 and the Windasystem32 directory under Windows NT.

Low-Level Support Driver

The Run-time Engine loads the low-level support driver if it is present when you start your
standalone executable. Several functions in the Utility Library require the low-level
support driver. Refer to the function referencedfatLowl evelSupportDriverLoaded in
Chapter 8Utility Library, of theLabWindows/CVI Standard Libraries Reference Marfoial
more information on these functions.

The installation program installs the low-level support driver in the Windgsism
directory under Windows 95 and the Windosystem32\drivers directory under

LabWindows/CVI Programmer Reference Manual 7-10 © National Instruments Corporation

Chapter 7 Creating and Distributing Standalone Executables and DLLs

Windows NT. Under Windows NT, the installation program also adds a registry entry under
the following key:

HKEY_LOCAL_MACHINE\SYSTEM\ControlSet001\Services\cvintdrv

Table 7-2 shows the values the installation program sets for the Windows NT registry entry
for the low-level support driver.

Table 7-2. Windows NT Registry Entry Values for the Low-Level Support Driver

Type Name Value
DWORD ErrorControl 00000001
String Group "Extended Base"
DWORD Start 00000002
DWORD Type 00000001

Message, Resource, and Font Files

The installation program instalté7seg.ttf andnisystem.ttf in thecvirte\fonts
subdirectory under the directory in which it installs the Run-time Engine DLLs. It installs the
msgrtn.txt ~ andcvirt n.rsc in thecvirte\bin subdirectory under the directory in

which it installs the Run-time Engine DLLs. It sets thiglir ~ option in the following

registry key to the pathname of thérte directory.

HKEY_LOCAL_MACHINE\Software\National Instruments
\CVI Run-Time Engine\cvirte

You can subsequently change the location obilheandfonts subdirectories, but you must
also change thevidir registry option to the pathname of the directory that contains the two
subdirectories.

National Instruments Hardware 1/0 Libraries

The LabWindows/CVI Run-time Engine does not include the DLLs or drivers for National
Instruments hardware. Users can install the DLLs and drivers for their hardware from the
distribution disks that National Instruments supplies.

LabWindows/CVI Run-Time Engine under Windows 3.1

For Windows 3.1, the LabWindows/CVI Run-time Engine comes in the form of an executable
file. The name of the executable filecisrt n.exe , wheren is the version of the Run-time
Engine. The Run-time Engine comes on a separate diskette. The LabWindows/CVI
installation program installs the Run-time Engine along with the development environment.
TheCreate Distribution Kit command in th&uild menu of the Project window can bundle

© National Instruments Corporation 7-11 LabWindows/CVI Programmer Reference Manual

Chapter 7 Creating and Distributing Standalone Executables and DLLs

the Run-time Engine into your distribution kit. Also, you can make copies of this diskette for
separate distribution. The user selects the directory into which to install the Run-time Engine.

The LabWindows/CVI Run-time Engine does not include the DLLs or drivers for National
Instruments hardware. Users can install the DLLs or drivers for their hardware from the
distribution disks that National Instruments supplies.

LabWindows/CVI Run-Time Engine under Sun Solaris

Under Sun Solaris, the Run-time Engine comes in the form of a shared library called
libcvi.so. n, wheren is the version number of the Run-time Engine. The installation
program installs the shared library in tike subdirectory under the Run-time Engine
installation directory. It also creates two symbolic links, whenge stands for the
Run-time Engine installation directory, as shown in Table 7-3.

Table 7-3. Pathnames and Targets of Links

Pathname of Link Target of Link
Jusr/lib/libcvi.so /usr/lib/libcvi.so. n
usr/lib/libcvi.so. n cvirte llib/libcvi.so. n

The installation program installs message and resource filesbimthairectory under the
Run-time Engine installation directory. It installs font description files ifidifite directory

under the Run-time Engine installation directory. You can subsequently change the location
of thebin andfonts subdirectories, but you must also changectidr configuration

option to the pathname of the directory that contains the two subdirectories.

The LabWindows/CVI Run-time Engine does not include the shared libraries or drivers for
National Instruments hardware. Users can install the shared libraries and drivers for their
hardware from the distribution disks that National Instruments supplies.

Rules for Accessing UIR, Image, and Panel State Files on All Platforms

The recommended method for accessing UIR, image, and panel state files in your executable
program is to place the files in the same directory as the executable and pass simple filenames
with no drive letters or directory namesLimdPanel , DisplaylmageFile ,

SavePanelState , andRecallPanelState

If you do not want to store these files in the same directory as your executable,

you must pass pathnamesLitmdPanel , DisplaylmageFile , SavePanelState , and
RecallPanelState . These functions interpret relative pathnames as being relative to the
directory that contains the executable.

LabWindows/CVI Programmer Reference Manual 7-12 © National Instruments Corporation

Chapter 7 Creating and Distributing Standalone Executables and DLLs

Rules for Using DLL Files under Windows 95/NT

Under Windows 95/NT, your executable or DLL can link to a DLL only through an
import library. This section refers to a DLL an executable or another DLL usesiasidiary
DLL. You can link an import library into your program in any of the following ways:

e Listitin your project.
» Associate it with thefp file for an instrument driver or user library.
« Dynamically load it by a callingoadExternalModule

If you list a DLL import library in the project or associate it with an instrument driver or user
library, LabWindows/CVI statically links the import library into your executable or DLL. On
the other hand, if you load the import library through a calbtmiExternalModule , you

must distribute it separately from your executable. Refer tBties for Loading Files Using
LoadExternalModulesection later in this chapter for more information.

Regardless of the method you use to link the import library, you must distribute the subsidiary
DLL separately. The import library always contains the name of the subsidiary DLL. When
your executable or DLL is loaded, the operating system finds the subsidiary DLL using the
standard DLL search algorithm, which the Windows SDK documentation for the

LoadLibrary function describes. The search precedence is as follows:

1. The directory from which the user loads the application
2. The current working directory

3. Under Windows 95, the Windowgstem directory. Under Windows NT, the Windows
system32 andsystem directories

4. The Windows directory
5. The directories listed in tHATHenvironment variable

The Create Distribution Kit command automatically includes in your distribution kit the
DLLs that the import libraries in your project refer to. You must add to the distribution kit
any DLLs that you load througlbadExternalModule or that you load by calling the
Windows SDKLoadLibrary function.

Do not include DLLs for National Instruments hardware in your distribution kit. The user
must install these DLLs from the distribution disks that National Instruments supplies.

Rules for Using DLL Files under Windows 3.1

LabWindows/CVI never links DLL files and DLL path files into the executable, so you must
distribute them as separate files. Treate Distribution Kit command automatically
includes DLLs that your project refers to in your distribution kit. The only exceptions are
DLLs for National Instruments hardware and DLLs that you load using
LoadExternalModule

© National Instruments Corporation 7-13 LabWindows/CVI Programmer Reference Manual

Chapter 7 Creating and Distributing Standalone Executables and DLLs

Do not include DLLs for National Instruments hardware in your distribution kit. The user
must install these DLLs from the distribution disks that National Instruments supplies.

If you uselLoadExternalModule to load DLLs, refer to the following sectioRules for
Loading Files Using LoadExternalModule

If you use a DLL file, a DLL path file, or a DLL glue object module in your project or as an
instrument driver, the Run-time Engine always looks for a corresponding DLL.ptith)(

file before it looks for the DLL itself. This search mechanism lets the user of your executable
place the DLLs anywhere on the target computer. The Run-time Engine uses the following
DLL search method.

1. Lookforapth fileinthe directory of the executable. Theéh file must have the same
base name as the file in the project or as the instrument driver. ptihefile contains
an absolute path to the DLL, use that path to find the DLL. Ifiithe file contains a
simple filename, use the standard Windows DLL search algorithm: directory of
executables, current working directowyjndows , \windows\system , then thePATH
environment variable.

2. Lookforadll fileinthe directory of the executable. Th# file must have the same
base name as the file in the project or as the instrument driver.

3. Otherwise, use the standard Windows DLL search algorithm.

Note Before searching for adll ~ file, the Run-time Engine always looks for a
.pth file. Therefore, your choice of whether to usemh file when you develop
your application in the LabWindows/CVI environment does not restrict your
choice of whether to use ath file in the standalone application.

Rules for Loading Files Using LoadExternalModule
LoadExternalModule can load the following file types:
Library Files: Jib (Windows) or.a (UNIX)
Object Modules: .obj (Windows) or.o (UNIX)

DLL Import Library Files: .lib (Windows 95/NT only)

DLL Path Files: .pth (Windows 3.1 only)
DLL Files: dil (Windows 3.1 only)
Source Files: .c (linked into your executable or DLL)

LabWindows/CVI Programmer Reference Manual 7-14 © National Instruments Corporation

Chapter 7 Creating and Distributing Standalone Executables and DLLs

Forcing Modules that External Modules Refer to
into Your Executable or DLL

In the LabWindows/CVI development environment, external modules can link to modules in
thelnstrument andLibrary menus regardless of whether you refer to them elsewhere in
your project. However, when you create a standalone executable, LabWindows/CVI includes
in the executable only modules that your project refers to directly. If an external module refers
to modules not included in the executable, calBuitExternalModule or
GetExternalModuleAddr on that external module fail.

To avoid this problem, you must force any missing modules into your executable or DLL.
You can do this when you create your executable or DLL by usingdtid-iles To
Executableor Add Files To DLL button to display a list of projedib , project.a ,

Instrument, and Library files. Select the files you want to include in your executable or DLL.
If you select alib or.a file, itis linked in its entirety.

Alternatively, you can link modules into your executable or DLL by including dummy
references to them in your program. For instance, if your external module references the
functionsFuncX andFuncY, include the following statement in your program:

void *dummyRefs[] = {(void *)FuncX, (void *)FuncY};

Using LoadExternalModule on Files in the Project

You can calLoadExternalModule on files listed in the project. You must pass the simple
filename toLoadExternalModule . However, when you create an executable or DLL from
your project, you might have additional work to do:

» If you link your executable or DLL in LabWindows/CYHe following rules apply for
files listed in the project:

— For.c or.obj files, everything works automatically.

— For.dll or.pth files (Windows 3.1 only), refer to theules for Using DLL Files
under Windows 3.&ection earlier in this chapter.

— Forlib files, by defaultCreate Standalone Executable Filer Create Dynamic
Link Library only links in the library modules that you reference statically in the
project. Thereforeyou must force into the executable the modules that contain the
functions you call usin@etExternalModuleAddr

To force these modules into the executable, include the library file in the project and
take one of the following actions:

« If you want to force the entire library file into the executable, usAdoae-iles
to Executablebutton in the Create Standalone Executable File dialog box, or
the Add Files to DLL button in the Create Dynamic Link Library dialog box.

© National Instruments Corporation 7-15 LabWindows/CVI Programmer Reference Manual

Chapter 7

Creating and Distributing Standalone Executables and DLLs

« If you want to force only specific modules from the library into the executable,
reference them statically in your program. For example, you could have an array
of void pointers and initialize them to the names of the necessary symbols.

« Ifyoulink in an external compileunder Windows 95/NT, the LabWindows/CVI Utility
library does not know the location of symbols in the externally linked executable or DLL.
Consequently, without further action on your part, you cannot call
GetExternalModuleAddr orRunExternalModule on modules that you link directly
into your executable or DLL. Your alternatives are as follows.

1. Remove the file from the project and distribute it as a sepatgte .lib
or .dll

2. Use the Other Symbols section of the External Compiler Support dialog box in
the Build menu of the Project window to create an object module that contains
a table of symbols you wamtetExternalModuleAddr to find. If you use this
method, pass the empty string to LoadExternalModule as the module
pathname. The empty string indicates that you linked the module directly into
your executable or DLL using an external compiler.

Using LoadExternalModule on Library and Object Files
Not in the Project

If you callLoadExternalModule on a library or object file not in the project, you must keep
the library or object file separate in your distribution.

When you keep an object or library file separate, you can manage memory more efficiently
and replace it without having to replace the executable. For this reason, if you call
LoadExternalModule ~ on a library or object in the project, remove or exclude the file from
the project before you selgCteate Standalone Executable Filer Create Dynamic Link
Library , and then include it as a separate file when yowCusate Distribution Kit .

However, remember that you cannot statically reference functions defined in a separate
library or object file from the executable or DLL. You must usadExternalModule and
GetExternalModuleAddr to make such references.

When you distribute the library or object file as a separate file, it is a good idea to place the
file in the same directory as the executable or DLL. If you place the file in the same directory,
you can pass a simple filenameLtadExternalModule . If you do not want the file to be

in the same directory as your executable, you must pass a pathname to
LoadExternalModule . LoadExternalModule interprets relative pathnames as being
relative to the directory that contains the executable or DLL.

LabWindows/CVI Programmer Reference Manual 7-16 © National Instruments Corporation

Chapter 7 Creating and Distributing Standalone Executables and DLLs

Using LoadExternalModule on DLL Files under Windows 95/NT

Under Windows 95/NT, you cannot pass the pathname of a DLL directly into
LoadExternalModule . Instead, you must pass the pathname of a DLL import library. You
can link the import library into your executable or DLL or distribute it separately and load it
dynamically. For import libraries that you link into your executable or DLL, refer tdshey
LoadExternalModule on Files in the Projesgction earlier in this chapter. For import
libraries that you load dynamically, refer to theing LoadExternalModule on Library and
Object Files Not in the Projectection earlier in this chapter.

You must always distribute DLLs as separate files. The operating system finds the DLL
associated with the loaded import library using the standard Windows DLL search algorithm.
The search precedence is as follows.

1. The directory from which the application loads
2. The current working directory

3. Under Windows 95, the Windowgstem directory. Under Windows NT, the Windows
system32 andsystem directories

The Windows directory
5. The directories theATHenvironment variable lists

Using LoadExternalModule on DLL and Path Files
under Windows 3.1

DLL files and DLL path files are never linked into the executable, so you must distribute them
as separate files.

Your executable can calbadExternalModule directly on a DLL or DLL path file only if
you include the DLL or DLL path file in the project. When you selretate Standalone
Executable File LabWindows/CVI automatically creates the DLL glue code and links it into
the executable.

Also, you can pass the DLL glue object module filenameadExternalModule . You can
generate the DLL glue object module by openingthéle for the DLL in a Source window
of LabWindows/CVI and selectinGenerate DLL Glue Objectfrom theOptions menu.

If you include the DLL, the DLL path file, or the DLL glue object module as a file in the
project, you must pas®adExternalModule a simple filename, and it uses the following
search method to find the DLL.

1. Lookforapth fileinthe directory of the executable. Théh file must have the same
base name as the file you passeibtmiExternalModule . If the.pth file contains an
absolute path to the DLL, use that path to find the DLL. Ifjitre file contains a simple
filename, use the standard Windows DLL search algorithm: directory of executables,

© National Instruments Corporation 7-17 LabWindows/CVI Programmer Reference Manual

Chapter 7 Creating and Distributing Standalone Executables and DLLs

current working directorywindows , \windows\system , then thePATHenvironment
variable.

2. Lookforadll fileinthe directory of the executable. Th# file must have the same
base name as the file you passetotmExternalModule

3. Otherwise, use the standard Windows DLL search algorithm.

If you maintain the DLL glue object module as a separate file from the executable, you must
passLoadExternalModule a pathname to the DLL glue object module, and it uses the
following search method to find the DLL.

1. Lookforapth filethatis inthe same directory as the DLL glue object module and that
has the same base name as the DLL glue object module.gftthdile contains an
absolute path to the DLL, use it to find the DLL. If thth file contains a simple
filename, use the standard Windows DLL search algorithm.

2. Lookforadil file thatis in the same directory as the DLL glue object module and that
has the same base name as the DLL glue object module.

3. Otherwise, use the standard Windows DLL search algorithm.

Note Before searching for adll file, a standalone executable always looks for a
.pth file. Therefore, your choice of whether to usemh file when you develop
your application in the LabWindows/CVI environment does not restrict your
choice of whether to use tpth file in the standalone application.

Using LoadExternalModule on Source Files (.c)

If you pass the name of a source fileéadExternalModule , the source file must be in the
project. LabWindows/CVI automatically compiles the source file and links it into the
executable when you seldtteate Standalone Executable Filer Create Dynamic Link
Library . For this reason you must pass a simple filenarheddExternalModule . If you
use an external compiler, refer to thising LoadExternalModule on Files in the Project
section earlier in this chapter.

If the source file is an instrument driver program that is not in the project and you link in
LabWindows/CVI, you have two alternatives:

e Add the instrument drivet source to the project.

« Refer to one of the variables or functions it exports in one of your project files.

If the source file is an instrument program that is not in the project and you link in an external
compiler, you must create an object file and keep it separate from the executable.

LabWindows/CVI Programmer Reference Manual 7-18 © National Instruments Corporation

Chapter 7 Creating and Distributing Standalone Executables and DLLs

Rules for Accessing Other Files

The functions for accessing files, suclicaen , OpenFile , SetFileAttrs , DeleteFile

and so on, interpret relative pathnames as being relative to the current working directory.
Under Windows, the initial current working directory is normally the directory of the
executable. However, if a different directory exists in the Working Directory or Start In field
of the Properties dialog box for the executable, then it is the initial current working directory.
Under UNIX, the initial current working directory is the directory from which you invoke the
executable. You can create an absolute path for a file in the executable directory by using
GetProjectDir andMakePathname .

Error Checking in Your Standalone Executable or DLL

Usually, you enable debugging and the Break on Library Errors option while you develop
your application in LabWindows/CVI. With these features enabled, LabWindows/CVI checks
for programming errors in your source code. Consequently, you might have a tendency to
relax your own error checking.

When you create a standalone executable program or DLL, all your source modules are
compiled. Compiled modules always disable debugging and the Break on Library Errors
option, resulting in smaller and faster code. Thus, you must perform your own error checking
when you create a standalone executable program or DLL. Refer to ChagiteccRing for

Errors in LabWindows/CV/Ifor details about performing error checking in your code.

© National Instruments Corporation 7-19 LabWindows/CVI Programmer Reference Manual

Distributing Libraries
and Function Panels

This chapter describes how to distribute libraries, add libraries to alufeasy menu, and
specify library dependencies.

How to Distribute Libraries

You can distribute libraries for other users to include in thbhary menu. You must create

a function panel.fp) for each library program file. If you do not want to develop function
panels for the library functions, creatdpa file without any classes or functions. In that case,
LabWindows/CVI loads the library at startup but does not include the library name in the
Library menu. This is useful when the library supports other libraries and contains no
user-callable functions.

Adding Libraries to User’s Library Menu

Normally, users must manually add libraries toltteary menu using theibrary Options
command in the Project windo@ptions menu. However, you can insert your libraries into
the user'd.ibrary menu by modifying the usertsi.ini file under Windows 3.1,

.CVi.ini under UNIX, or the Registry under Windows 95/NT.

Under Windows 3.1 and UNIX, theodini program is in the LabWindows/C\in
subdirectory for this purpose. A documentation file cathedini.doc and the source code
are in the same directory.

Under Windows 95/NT, themodreg program is in the LabWindows/CVWin subdirectory
for this purpose. A documentation file calieddreg.doc and the source code are in the
same directory.

Assume that you install function panels for two libraries in the following location:

c:\newlib\libl.fp
c:\newlib\lib2.fp

© National Instruments Corporation 8-1 LabWindows/CVI Programmer Reference Manual

Chapter 8 Distributing Libraries and Function Panels

To add the libraries to the uselbrary menu under Windows 3.1 and UNIX, yonodini
command file must be:

add Libraries LibraryFPFile "c:\newlib\lib1.fp"
add Libraries LibraryFPFile "c:\newlib\lib2.fp"

After the user installs the library files, thedini program must be run on the user’s disk
usingcvi.ini and the command file.

To add the libraries to the uset’®rary menu under Windows 95/NT, yoniodreg
command file must be:

setkey [HKEY_CURRENT_USER\Software\National Instruments]
appendkey CVI\@latestVersion

add Libraries LibraryFPFile "c:\newlib\lib1.fp"

add Libraries LibraryFPFile "c:\newlib\lib2.fp"

After the user installs the library files, thisdreg program must be run on the user’s disk
using the command file.

ii Caution LabWindows/CVI must not be running when you use thedini or modreg
program to modifycvi.ini or the Registry. If LabWindows/CVI is running while
you use these programs, you will lose your changes.

Specifying Library Dependencies

When one library you distribute is dependent upon another library you distribute, you can
specify this dependency in the function panel file for the dependent library. When
LabWindows/CVI loads the dependent library, it attempts to load the libraries upon which it
depends. Use thEP Auto-Load List command in th&dit menu of the Function Tree Editor
window of the dependent library to list thie files of the libraries upon which it depends.
Refer to theFunction Tree Editochapter of thé.abWindows/CVI Instrument Driver
Developers Guidéor details on this command.

LabWindows/CVI can find the required libraries most easily when they are all in the same
directory as the dependent library. When you cannot put them in the same directory, you must
add the directories in which the required libraries reside to the user’s Instrument Directories
list. The user can manually enter this information usindrtteument Directories

command in the Project windo@ptions menu. Also, you can add to the Instrument
Directories list by editingvi.ini under Windows 3.1¢vi.ini under UNIX, or the

Registry under Windows 95/NT.

LabWindows/CVI Programmer Reference Manual 82 © National Instruments Corporation

Chapter 8 Distributing Libraries and Function Panels

National Instruments recommends that your installation program modlify

.CVi.ini , or the Registry, automatically. Under Windows 3.1 pthédini program is in the
LabWindows/CVIbin subdirectory for this purpose. A documentation file called
modini.doc and the source code are in the same directory.

Under Windows 95/NT, themodreg program is in the LabWindows/CVWin subdirectory
for this purpose. A documentation file calleddreg.doc and the source code are in the
same directory.

Assume that you install twép files in the following locations:

c:\newlib\liba.fp
c:\genlib\libb.fp

If iba depends otibb , you must add the following path to the user’s Instrument
Directories list:

c:\genlib

For LabWindows/CVI to be able to find the dependent file under Windows 3.1 and UNIX,
yourmodini command file must be,

add InstrumentDirectories InstrDir "c:\genlib"

After the user installs the library files, thedini program must be run on the user’s disk
usingcvi.ini and the command file.

For LabWindows/CVI to be able to find the dependent file under Windows 95/NT, your
modreg command file must be,

setkey [HKEY_CURRENT_USER\Software\National Instruments]

appendkey CVI\@latestVersion

add InstrumentDirectories InstrDir "c:\gewlib"

After the user installs the library files, thedreg program must be run on the user’s disk
using the command file.

ii Caution LabWindows/CVI must not be running when you use tinedini or modreg
program to modifyeviiini or the Registry. If LabWindows/CVI is running while
you use these programs, you will lose your changes.

© National Instruments Corporation 8-3 LabWindows/CVI Programmer Reference Manual

Checking for Errors in
LabWindows/CVI

This chapter describes LabWindows/CVI error checking and how LabWindows/CVI reports
errors in LabWindows/CVI libraries and compiled external modules.

When you develop applications in LabWindows/CVI, you usually have debugging and the
Break on Library Errors option enabled. With these features enabled, LabWindows/CVI
identifies and reports programming errors in your source code. Therefore, you might have a
tendency to relax your own error checking. However, in compiled modules and standalone
executables, debugging and the Break on Library Errors are disabled. This results in smaller
and faster code, but you must perform your own error checking. This fact is important to
remember because many problems can occur in compiled modules and standalone
executables even if the program works inside the environment.

It is important to check for errors that can occur because of external factors beyond the control
of your program. Examples include running out of memory or trying to read from a file that
does not existnalloc , fopen , andLoadPanel are examples of functions that can encounter
such errors. You must provide your own error checking for these types of functions. Other
functions return errors only if your program is incorrect. The following function call returns
an error only ifonl orctrl is invalid.

SetCtrlAttribute(pnl, ctrl, ATTR_DIMMED, FALSE);

The Break on Library Errors feature of LabWindows/CVI adequately checks for these types
of errors while you develop your program, and external factors do not affect this function call.
Therefore, it is generally not necessary to perform explicit error checking on this type of
function call.

One method of error checking is to check the status of function calls upon their completion.
Most functions in commercial libraries return errors when they encounter problems.
LabWindows/CVI libraries are no exception. All the functions in the LabWindows/CVI
libraries and in the instrument drivers available from National Instruments return a status code
to indicate the success or failure of execution. These codes help you determine the problem
when the program does not run as you expected it to. This chapter describes how
LabWindows/CVI reports these status codes and some techniques for checking them.

© National Instruments Corporation 9-1 LabWindows/CVI Programmer Reference Manual

Chapter 9 Checking for Errors in LabWindows/CVI
Note Status codes are integer values. These values are either common to an entire

library of functions, or specific to one function. Libraries that have a common set
of codes have a listing at the end of the chapter or manual they appear in. You can
find the error message for each integer value there. In addition, each of these
libraries contains a function you can call to translate the integer value to an error
string. When an error code is specific to a function, you can find a description for
it in the function description in the LabWindows/CVI manual set. The error
description also appears in the online help of the library function panels in
LabWindows/CVI.

Error Checking

LabWindows/CVI functions return status codes in one of two ways—either by a function
return value, or by updating a global variable. In some cases, LabWindows/CVI uses both of
these methods. In either case, it is a good idea to monitor these values so that you can detect
an error and take appropriate action. A common technique for error checking is to monitor the
status of functions, and when a function reports an error, pause the program and report the
error to the user through a pop-up message. For examopiRanel returns a positive

integer when it successfully loads a user interface panel into memory. However, if a problem
occurs, the return value is negative. The following example shows an error message handler
for LoadPanel .

panelHandle = LoadPanel (0, "main.uir", PANEL);
if (panelHandle < 0) {
ErrorCheck ("Error Loading Main Panel", panelHandle,
GetUILErrorString (panelHandle));

}

When a function reports status through a separate function, as in the RS-232 Library, check
for errors in a similar way. In this case, the status function returns a negative value when the
original function fails.

bytesRead = ComRd (1, buffer, 10);
if (ReturnRS232Error() < 0) {
ErrorCheck ("Error Reading From ComPort #1", ReturnRS232Error(),
GetRS232ErrorString(ReturnRS232Error()));

}

Notice that the above function also returns the number of bytes read from the serial port. You
can compare the number of bytes read to the number you request, and if a discrepancy exists,
take the appropriate action. Notice that the error codes differ between the RS-232 Library and
the User Interface Library. A section describing how each LabWindows/CVI library reports
errors follows this section.

LabWindows/CVI Programmer Reference Manual 9-2 © National Instruments Corporation

Chapter 9 Checking for Errors in LabWindows/CVI

After your program detects an error, it must take some action to either correct the situation or
prompt the user to select a course of action. The following example shows a simple error
response function.

void ErrorCheck (char *errMsg, int errVal, char *errString)
{

char outputMsg[256];

int response;

Fmt (outputMsg, "%s (Error = %d).\n%s\nContinue? ",

errMsg,errVal,errString);
response = ConfirmPopup ("ErrorCheck", outputMsg);
if (response == 0)
exit (-1);

}

Status Reporting by LabWindows/CVI Libraries
and Instrument Drivers

This section describes how LabWindows/CVI libraries and instrument drivers report errors.
Notice that libraries that return their status code using global variables or separate functions
sometimes report additional status information through return values.

User Interface Library

The User Interface Library routines return a negative value when they detect an error. Some
functions, such alsoadPanel , return positive values for a successful completion. This

library uses a common set of error codes, whichL&#i®Vindows/CVI User Interface

Reference Manualnd the function panel help list. You can use the function

GetUILErrorString to get the error message associated with each User Interface Library
error code.

Analysis/Advanced Analysis Libraries

The Analysis and Advanced Analysis Library functions return a negative value when they
detect an error. This library uses a common set of error codes, whickbWéndows/CVI
Standard Libraries Reference ManutdieLabWindows/CVI Advanced Analysis Reference
Manual and the function panel help list. You can use the function

GetAnalysisErrorString to get the error message associated with each Analysis Library
error code.

© National Instruments Corporation 9-3 LabWindows/CVI Programmer Reference Manual

Chapter 9

Checking for Errors in LabWindows/CVI

Easy I/0 for DAQ Library

The Easy 1/O for DAQ Library functions return a negative value when they detect an error.
They return a positive value as a warning when they are able to complete their task but not in
the way you might expect. This library uses a common set of error codes. The positive
warning codes are the same absolute values as the negative error codes. Refer to the
LabWindows/CVI Standard Libraries Reference Marmahe function panel help for a

listing of the error codes and information on the individual functions. You can use
GetDAQETrrorString to get the error message associated with each Easy I/O for DAQ
Library error or warning code.

Data Acquisition Library

The Data Acquisition Library functions return a negative value when they detect an error.
They return a positive value as a warning when they are able to complete their task but not in
the way you might expect. This library uses a common set of error codes. The positive
warning codes are the same absolute values as the negative error codes.

Refer to the back of thdl-DAQ Function Reference Manual for PC Compatildethe
function panel help for a listing of the error codes. You carGasi¢IDAQETrrorString to
get the error message associated with each Data Acquisition Library error or warning code.

VXI Library

The VXI Library uses a variety of global variables and function return codes to report any
error that occurs. You must check each function description to determine what error checking
might be necessary. Refer to the specific VXI function reference manual or the on-line help
for a listing of the error codes.

GPIB/GPIB 488.2 Library

The GPIB libraries return status information through two global variables dadtad
andiberr

Note If your program uses multiple threads, use thareadlbsta ~ and Threadlberr

functions in place of thabsta andiberr global variables.

Note The GPIB Library functions return the same value that they assigiibtea . You

can choose to use either the return valuésta , or Threadlbsta

TheERRDbit withinibsta indicates an error condition. If this bit is not $e¢yr does not
contain meaningful information. If tHERRbit is set iribsta , the error condition is stored in

LabWindows/CVI Programmer Reference Manual 9-4 © National Instruments Corporation

Chapter 9 Checking for Errors in LabWindows/CVI

iberr . After each GPIB call, your program should check whetheERRDit is set to
determine if an error has occurred, as shown in the following code segment.
if (ibwrt(bd[instrID], buf, cnt) & ERR)

PREFIX_err = 230;

Refer to youlNI-488.2 Function Referen@nd user manuals for detailed information on
GPIB global variables and listings of status and error codes. LabWindows/CVI function panel
help also has listings of status and error codes.

RS-232 Library

The RS-232 library returns status information through a global variable csiisrr . If

this variable is negative after the function returns, an error occurred. Notice that many of the
functions return a value in addition to setting the global variable. Usually, this value contains
information on the result of the function that can also be used to detect a problem. Each
function should be checked individually. Refer to the RS-232 section irmbwindows/CVI
Standard Libraries Reference Manwalthe function panel help for a listing of the error codes
and information on the individual functions. You can @s#RS232ErrorString to get the

error message associated with each RS-232 Library error code.

Note If your program uses multiple threads, use tReturnRS232Err function in
place of thers232err global variable.
VISA Library

The VISA Library functions return a negative value when they detect an error. They return a
positive value as a warning when they can complete their task but not in the way you might
expect. This library uses a common set of error and warning codes, but the warning code
values are entirely separate from the error code values. The error codes always contain
OxBFFF in the upper two bytes. The warning codes always contain Ox3FFF in the upper two
bytes. Refer to thBlI-VISA Programmer Reference Manwgalthe function panel help for a
listing of the error and warning codes and information on the individual functions. You can
useviStatusDesc to obtain the error message associated with each VISA Library error
code.

IVI Library

The IVI Library functions return a negative value when they detect an error. This library uses
a common set of error codes. Refer tolthbWindows/CVI Instrument Driver Developers
Guideor the function panel help for a listing of the error codes and information on the
individual functions. IVI Library functions sometimes also provide a secondary error code or
an elaboration string to give you additional information about an error condition. You can use
Ivi_GetErrorinfo to obtain the primary error code, secondary error code, and the
elaboration string. You can usé GetErrorMessage to obtain the error message
associated with each IVI Library error code.

© National Instruments Corporation 9-5 LabWindows/CVI Programmer Reference Manual

Chapter 9 Checking for Errors in LabWindows/CVI

TCP Library

The TCP Library functions return a negative value when they detect an error. This library uses
a common set of error codes, which tadWindows/CVI Standard Libraries Reference
Manualand the LabWindows/CVI function panel help list. You can use

GetTCPETrrorString to get the error message associated with each TCP Library error code.

DDE Library

The DDE Library functions return a negative value when they detect an error. This library
uses a common set of error codes, which.#iBVindows/CVI Standard Libraries Reference
Manualand the LabWindows/CVI function panel help list. You can use the function
GetDDEErrorString to get the error message associated with each DDE Library error code.

ActiveX Automation Library

The ActiveX Automation Library functions return a negative value when they detect an error.
This library uses a common set of error codes. Refer toah@/indows/CVI Standard
Libraries Reference Manualr the function panel help for a listing of the error codes and
information on the individual functions. You can @& GetAutomationErrorString to

get the error message associated with each ActiveX Automation Library error code.

X Property Library

The X Property Library functions return a negative value when they detect an error. This
library uses a common set of error codes, whichL#®Vindows/CVI| Standard Libraries
Reference Manualnd the LabWindows/CVI function panel help list. You can use the
functionGetXPropErrorString to get the error message associated with each X Property
Library error code.

Formatting and 1/0 Library

This library contains the file 1/0, string manipulation, and data formatting functions. All
functions return negative error codes when they detect an error. However, you must keep in
mind an important fact. When you enable debugging, the LabWindows/CVI environment
keeps track of the sizes of strings and arrays. If it detects any attempt to access a string or array
beyond its boundary, the environment halts the program and informs you. It is important to
remember that this feature works only when you execute source code in the
LabWindows/CVI development environment. The string functions can write beyond the end

of a string or array without detection, resulting in corruption of memory. Therefore, you must
use the Formatting and 1/O functions on strings and arrays with caution.

In addition to the return codes, tBetFmtErrNdx andNumFmtdBytes functions
return information on how the last scanning and formatting function executed. The
GetFmtlOError function returns a code that contains specific error information on the last

LabWindows/CVI Programmer Reference Manual 9-6 © National Instruments Corporation

Chapter 9 Checking for Errors in LabWindows/CVI

Formatting and 1/O Library function that performed file /0. Th&FmtIOErrorString
function converts this code into an error string. Refer td.#Vindows/CVI Standard
Library Reference Manudbr more information.

Utility Library

Utility Library functions report error codes as return values. You can check each individual
function description in theabWindows/CVI Standard Libraries Reference Maraah the
LabWindows/CVI function panel help to determine the error conditions that can occur in each
function.

ANSI C Library

Some of the ANSI C library functions report error codes as return values. Some functions also
set the global variabkarno . Generally, the functions do not cleamo when they return
successfully. To learn more about these values, you can consult a publicationGugh as
Reference Manualited in theRelatedDocumentatiorsection ofAbout This ManualAlso,

you can use the LabWindows/CVI function panel help to determine the error conditions that
can occur in each function.

LabWindows/CVI Instrument Drivers

Instrument drivers from National Instruments use a standard status reporting scheme.
Functions report error codes as return values, and you can check each function individually
in the LabWindows/CVI function panel help to determine the error conditions that can occur
in each function.

Instrument drivers that comply with the Mugé&play standard contain two error reporting
functions.Prefix _error_query , wherePrefix is the instrument prefix, allows you to
query the error queue in the physical instrument. If the instrument does not have an error
queuePrefix _error_query returns the/I_ WARN_NSUP_ERROR_QUEW®#rning code

from the VISA Library.Prefix _error_message translates the error and warning codes
that the other instrument driver functions return into descriptive strings.

IVI instrument drivers are VX{lug&play compliant and so contain the

Prefix _error_query andPrefix _error_message functions. In addition, IVI

instrument driver functions sometimes also provide a secondary error code or an elaboration
string to give you additional information about an error condition. You can use

Prefix _GetErrorinfo to obtain the primary error code, secondary error code, and the
elaboration string for the first error that occurred on a particular instrument session or in the
current thread since you last calleefix _GetErrorinfo . You also can use the

Prefix _GetAttribute function to obtain each of these data items, individually, for the

most recent function call on a particular instrument session.

© National Instruments Corporation 9-7 LabWindows/CVI Programmer Reference Manual

Errors and Warnings

This appendix contains an alphabetized list of compiler warnings, compiler errors, link errors,
DLL loading errors, and external module loading errors generated by LabWindows/CVI.

Table A-1. Error Messages

Error Message Type Error Comment
flag is valid only Non-Fatal Ensure that you use the correct format
with o, x, e, f, and g Run-time Error | specifier, and that no extra characters exist
specifiers. before the format specifier.
#elif missing constant Compile Ensure that a conditional expression folloys
expression. Error #elif on the same line.
#if missing constant Compile Ensure that a conditional expression folloys
expression. Error #if on the same line.
#ifdef expects an Compile Ensure that an identifier followsfdef on
identifier. Error the same line.
#ifndef expects an Compile Preprocessor conditional directigiéndef
identifier. Error requires an identifier following it on the

same line. Make sure that an identifier
follows #ifndef on the same line.

#line directive cannot Compile #line preprocessor directive requires a
specify line 0. Error non-zero line number value.
#line directive cannot Compile #line preprocessor directive cannot set the
specify line greater Error line greater than 32,767.
than 32767.
#line directive expects Compile #line preprocessor directive requires a line
numeric argument. Error number value to be specified following

#line
##atbeginning of macro Compile ## preprocessing token is at the beginning of
definition. Error a macro definition. Ensure that a

preprocessing token precedes

© National Instruments Corporation A-1 LabWindows/CVI Programmer Reference Manual

Appendix A Errors and Warnings

Table A-1. Error Messages (Continued)

®

o

—

—

Error Message Type Error Comment
at end of macro Compile ## preprocessing token is at the end of a
definition. Error macro definition. Ensure that a
preprocessing token(s) follow.
, or) expected. Compile Ensure that the function macro argument list
Error terminates with & and that a separates all
the macro arguments.
0flagis not valid with Non-Fatal Use of an incorrect format specifier or use|of
c,s,p,andn Run-time Error | afield width starting witld might cause this|
modifiers. error.
Aborted load of library Link Error Library load operation aborted. A more
FILE. specific diagnostic of the library load erro
precedes this message.
Aborted load of member Link Error Library member load operation aborted. A
NAME from library FILE. more specific diagnostic of the library
member load error precedes this messag
Aborted load of object Link Error Obiject file load aborted. A more specific
module FILE. diagnostic of the object file load error
precedes this message.
Absolute segments not PC/Windows OMF object file contains a segment to loa
supported: segment name Load Error at an absolute address.
NAME.
Anonymous enum declared Compile Enumeration declared in the parameter li$
inside parameter list Warning has scope only within the parameter list. As
has scope only for this a result, its type is incompatible with
declaration. all other types. You must declare the
enumeration type before declaring functign
types that use it.
Anonymous struct Compile Structure declared in the parameter list has
declared inside Warning scope only within the parameter list. As a
parameterlisthasscope result, its type is incompatible with all othe
only for this types. You must declare the structure type
declaration. before declaring function types that use it
LabWindows/CVI Programmer Reference Manual A-2 © MNational Instruments Corporation

Appendix A Errors and Warnings

Table A-1. Error Messages (Continued)

function pointer to the
correcttypeofcallback

Run-time Error

Error Message Type Error Comment

Anonymous union declared Compile Union declared in the parameter list has

inside parameter list Warning scope only within the parameter list. As a

has scope only for this result, its type is incompatible with all other

declaration. types. You must declare the union type
before declaring function types that use it

Argument 4 must be 0 Fatal Value of the argument to the library functign

or 1. Run-time Error | must bed or1.

Argument NUMBER must be Fatal Value of the argument to the library functign

0,1, or2. Run-time Error | must beo, 1, or2.

Argument must be a Non-Fatal Argument to the function is not a pointer to

the expected type of callback function.

function.
Argumentmustbe anopen Fatal Argument to the I/O library function must be
stream. Run-time Error | one of the standard streansgi(n

stdout , stderr
thefopen()

) or a stream you open with
orfreopen() functions.

Argument must be
character.

Fatal
Run-time Error

Value of the argument to the library functig
must be less thazb6.

5

Array argument too

Fatal

Library function requires an array that is

must contain at least
NUMBER bytes (NUMBER
elements).

small. Run-time Error | larger than the specified argument. Make
sure you declare or allocate the array with
sufficient elements for the function call.

Arrayargumenttoosmall Fatal Library function requires an array that is

(NUMBERbytes). Argument Run-time Error | larger than the specified argument. Make

sure you declare or allocate the array with
the number of elements this error message
reports.

Arrayindex(NUMBER)too
large (maximum: NUMBER).

Non-Fatal
Run-time Error

You indexed an array past the last element.

Assertion error:
EXPRESSION.

Fatal
Run-time Error

Value of the argumerEXPRESSIONO the
Standard C Library macrassert isO.

© National Instruments Corporation

LabWindows/CVI Programmer Reference Manual

Appendix A

Errors and Warnings

Table A-1. Error Messages (Continued)

pointer value.

Run-time Error

Error Message Type Error Comment
Assignment between Compile Although allowed, use caution because al
TYPE and TYPE is Warning assignment of aimteger type expression
compiler-dependent. value to arenum type target might not
correspond to any known enumeration
constant for thaé¢num type. Depending on
the enumeration, the size of ttum type
can be 1, 2, or 4 bytes and therefore may
incapable of representing all integer values.
Assignment of invalid Non-Fatal Value you assigned to a pointer is an inva

pointer value. Check the right side of the
assignment to determine if it is the result
a previous invalid pointer operation.

Assignment of
out-of-bounds pointer:
NUMBER bytes before
start of array.

Non-Fatal
Run-time Error

Value you assigned to the pointer refers to
invalid location, which isVUMBERYtes
before an array. The right side of the
assignment is probably the result of previo
illegal pointer arithmetic.

be

id

an

Assignment of
out-of-bounds pointer:
NUMBER bytes pastend of
array.

Non-Fatal
Run-time Error

Value you assigned to the pointer refers to
invalid location, which is3vUMBERytes past
the end of an array. The right side of the

assignment is probably the result of previo
illegal pointer arithmetic.

an

c
(2]

Assignmentofpointerto
freed memory.

Non-Fatal
Run-time Error

Value you assigned to the pointer is invali
because it refers to a location in dynamic
memory that théee function deallocated.
After memory is free, all pointers into that
block of memory are invalid.

Assignment of
uninitialized pointer
value.

Non-Fatal
Run-time Error

Value you assigned to the pointer is invali
because it was not initialized. The right sig
of the assignment is probably an
uninitialized local variable or an object in
dynamic memory that you allocated with
malloc . Initialize local variables and
dynamic memory before you use them.
calloc both allocates and initializes

o

le

dynamic memory.

LabWindows/CVI Programmer Reference Manual A-4

© MNational Instruments Corporation

Appendix A Errors and Warnings

Table A-1. Error Messages (Continued)

y

y

Error Message Type Error Comment

Assignment to const Compile const variables or parameters are read-on

identifier NAME. Error values that you cannot modify once
initialized. Ensure that no assignment
operations modify the identifier.

Assignment to const Compile const variables or parameters are read-on

location. Error values that you cannot modify once
initialized. Ensure that no assignment
operations modify thivalue (such as an
array reference, or a pointer dereference
that specifies theonst location.

Attempt to free invalid Fatal Pointer value you passed to fhee

pointer expression.

Run-time Error

=

function is invalid. It is probably the result
a previous invalid pointer operation.

Attempt to free pointer
to freed memory.

Fatal
Run-time Error

Pointer value you passed to fhee
function refers to a location in dynamic
memory that you already deallocated.

Attempt to free
uninitialized pointer.

Fatal
Run-time Error

Pointer value you passed to fhee
function is invalid because you did not
initialize it. It is probably an uninitialized
local variable. Initialize local variables
before you use them.

Attempt to read beyond
end of array.

Non-Fatal
Run-time Error

Source array is not large enough to satisfy
the destination specifiers.

Attempt to read beyond
end of string.

Non-Fatal
Run-time Error

Source string is not large enough to satisfy
the destination specifiers.

Attempt to realloc
invalid pointer
expression.

Fatal
Run-time Error

Pointer value you passed to tealloc
function is invalid. It is probably the result
a previous invalid pointer operation.

—h

Attempt to realloc
pointer to freed memory.

Fatal
Run-time Error

Pointer value you passed to tealloc
function refers to a location in dynamic
memory that you already deallocated.

© National Instruments Corporation

LabWindows/CVI Programmer Reference Manual

Appendix A Errors and Warnings

Table A-1. Error Messages (Continued)

Error Message

Type Error

Comment

Attempt to realloc
uninitialized pointer.

Fatal
Run-time Error

Pointer value you passed to tealloc
function is invalid because you did not
initialize it. It is probably an uninitialized
local variable. You must initialize local
variables before you use them.

Attempt to write beyond
end of array.

Non-Fatal
Run-time Error

Output array is smaller than the given form
specifiers and input parameters require.

Attempt to write beyond
end of string.

Non-Fatal
Run-time Error

Output string is smaller than the given
format specifiers and input parameters
require.

b modifier must precede
o modifier.

Non-Fatal
Run-time Error

If both theb ando modifiers are present, the

b modifier must precede themodifier.

Bad BSS section
encountered while

Object Load
Error

Object module is corrupted or is
of a type that you cannot load into

reading external module: LabWindows/CVI.
FILE.
Bad COFF Library header. Object Load Library file you are loading is either

Error

corrupted or not in the COFF format.

Bad COFF Library member
header.

Object Load
Error

COFF library you are loading contains a
module that is corrupted or in an invalid
format.

position NUMBER: OMF
record type NAME.

Bad location code: OMF Link Error Object module is corrupted or is of a type
record position NUMBER: that you cannot load into LabWindows/C\/
OMF record type NAME.

Bad magic number Link Error Object module is corrupted or is of a type
encountered while that you cannot load into LabWindows/C\/
reading external module:

FILE.

Bad method: OMF record Link Error Object module is corrupted or is of a type
position NUMBER: OMF that you cannot load into LabWindows/C\/
record type NAME.

Bad name: OMF record Link Error Object module is corrupted or is of a type

that you cannot load into LabWindows/C\/

LabWindows/CVI Programmer Reference Manual A-6

© MNational Instruments Corporation

at

Appendix A Errors and Warnings

Table A-1. Error Messages (Continued)

Error Message Type Error Comment

Bad OMF record at PC/Windows OMF object file contains an unknown obje

position NUMBER: OMF Load Error record. Make sure that the object file is OM

record type NAME. and conforms to the 32-bit format
LabWindows/CVI supports.

Bad relocation record Link Error Object module is corrupted or is of a type

encountered while that you cannot load into LabWindows/C\

reading external module:

FILE.

Bad OMF record at PC/Windows OMF object file contains an unknown obje

position NUMBER: OMF Load Error record. Make sure that the object file is OM

record type NAME. and conforms to the 32-bit format
LabWindows/CVI supports.

Byte ordering is Non-Fatal Byte ordering that the modifier specifies is

invalid.

Run-time Error

not valid for the size of the integer. The
number of digits following the must match
the size of the integer, and the digits must f
in the range zero teize of the integerl.

¢ modifier valid only
with | format specifier.

Non-Fatal
Run-time Error

¢ modifier is only valid for thé format
specifier.

The callback function,

NAME, specified in the
UIR file, does not have
required prototype.

Non-Fatal
Run-time Error

You specified thevAMHunction as a
callback function for an item in a user
interface resource file, but it does not hay
the correct type to be a callback function.
Callback functions must have one of the
callback types specified in the user interfal
library header. The function will not be
called.

The callback function,
NAME, specified in the
UIRfile, isnotaknown
function.

Non-Fatal
Run-time Error

You specified thevAMHunction as a
callback function for an item in a user
interface resource file, but the function do
not exist.

© National Instruments Corporation

A-7

ct
=

ct
E

ce

es

LabWindows/CVI Programmer Reference Manual

Appendix A

Errors and Warnings

Table A-1. Error Messages (Continued)

ate

f

in declaration.

Error Message Type Error Comment

Calling conventions have | Compile You placed a calling convention keyword

no effect on variables; Warning before a variable name.

f:alhng Convent'c.)r.] For function pointers, you must place the

ignored. Thepositionof . . o

.) calling convention to the left of the' , for
the calling convention .
” example:

modifier may be

incorrect. int (__cdecl * funptr)();

Cannot concatenate wide Compile Make sure the string literals you concaten

and regular string Warning are either both wide string literals or regul

literals. string literals.

Cannot free: memory not Fatal Pointer value you passed to the function

allocatedbymalloc()or Run-time Error | free is invalid because it does not point t

calloc(). dynamic memory allocated hyalloc or
calloc .free can deallocate only pointers
you obtain from one of these two function

Cannotgenerategluefor Glue Code In order to generate glue code for a DLL

a function without a Generation function, you must specify a complete

prototype: NAME. Error prototype for the function. You must specif
the types of the parameters in the prototy

Cannotgenerategluefor Glue Code You cannot export static functions in a DLL;

a static function: Generation so it is useless to generate glue code for

FUNCTION. Error them.

Cannotgenerategluefor Glue Code In LabWindows/CVI for Windows 3.1, you

a variable argument Generation cannot use DLL functions that accept a

function: FUNCTION. Error variable number of arguments.

Cannot initialize Compile You attempted to initialize a declaration o

undefined TYPE. Error an incompletestruct orunion type, such
as astruct orunion type whose member
you have not yet specified. Ensure that th
initialization appears after the full struct o
union declaration.

Cannot link variable Link Error Variable that you have declaredeagern is

NAME to import library defined in a DLL import library, but you did

without __import keyword not include the _import qualifier in the

declaration.

LabWindows/CVI Programmer Reference Manual

A-8

© MNational Instruments Corporation

Appendix A Errors and Warnings

Table A-1. Error Messages (Continued)

expressions.

Error Message Type Error Comment
Cannot link variable Link Error Variable that you have declaredeagern is
NAME to import defined in a DLL import library, but you did
library without not include thealeclspec(dllimport)
declspec(dllimport) qualifier in the declaration.
keyword in declaration.
Case label must be a Compile Case labels must be known integer values at
constant integer Error compile time; make sure the case label
expression. conforms to the requirements for a constant

integer expression.

Cast from TYPE to TYPE Compile You cannot cast a pointer type to arithmetic
is illegal in constant Error type in a constant expression.

Cast from TYPE to TYPE
is illegal.

Compiler Error

ANSI C does not allow a cast between th
two types.

D

null pointer.

COFF Name too long. Object Load COFF object or library you are loading
Error contains a symbol name that is longer than
the maximum legal length.
Comparison involving Non-Fatal One of the pointer expressions in the

Run-time Error

comparison has the valiLL Both
expressions in pointer comparisons must
point into the same array object.

Comparison involving
uninitialized pointer.

Non-Fatal
Run-time Error

One of the pointer expressions in the
comparison is invalid because you did no
initialize it.

Comparison of pointers
to different objects.

Non-Fatal
Run-time Error

Pointer expressions in the comparison pojnt
to two distinct objects. Both expressions in
pointer comparisons must point into the
same array object.

Comparison of pointers
to freed memory.

Non-Fatal
Run-time Error

One of the pointer expressions in the
comparison is invalid because it refers to g
location in dynamic memory that you
deallocated with théee function. Once
you free the memory, all pointers into that
block of memory become invalid.

© National Instruments Corporation

LabWindows/CVI Programmer Reference Manual

Appendix A Errors and Warnings

Table A-1. Error Messages (Continued)

space. Try decreasing
the Maximum stack size
option in the Run
Options dialog.

Run-time Error

Maximum Stack Size you have specified.
LabWindows/CVI allocates the maximum
size on the stack at the beginning of
execution.

Error Message Type Error Comment

Compound statements Compile Program has exceeded the compiler

nested too deeply. Error limitations on the number of nested
compound statements; reduce the depth pf
the nested compound statements in the
program.

Conditional inclusion Compile Program has exceeded the compiler

nested too deeply. Error limitations on the number of nested
conditional preprocessor directives; reduge
the depth of the conditional preprocessor
directives nested in the program.

Conflicting GRPDEFs: Link Error Object module is probably corrupted.

group name NAME.

Conflicting argument Compile Arguments of the named function prototype

declarations for Error declaration do not match those for the

function FUNCTION. old-style function definition of the same
name; ensure that the function declaration
matches that of the old-style function
definition. A better course is to change the
old-style function definition to a new-style
definition that matches the function
prototype declaration.

Constant expression must | Compile Constant integer expression is expected in

be integer. Error this context. Ensure the expression conforms
to the semantics of a constant expression that
computes an integer value.

Conversion from Compile Avoid converting between a function pointer

TYPE to TYPEis Warning and other types of pointers, because you

compiler-dependent. should not access functions as data, and you
cannot execute data as functions.

Couldnotallocatestack Fatal There is insufficient memory to allocate the

LabWindows/CVI Programmer Reference Manual

A-10

© MNational Instruments Corporation

Appendix A Errors and Warnings

Table A-1. Error Messages (Continued)

Fmt/FmtOut/FmtFile.

Run-time Error

or FmtFile

byte object where only
NUMBER bytes exist.

Run-time Error

to an object that is smaller than the type of

the dereference. For example, ifian
pointer points to an object of typkar , you
cannot dereference the pointer because i
points to only 1 byte, whereas i@n
requires 4 bytes.

Dereference of data
pointer used as a
function.

Fatal
Run-time Error

You converted a data pointer to a function
pointer and then dereferenced it. You can
examine or modify data, but you cannot
execute it as a function.

© National Instruments Corporation

A-11

LabWindows/CVI Programmer Reference Manual

Error Message Type Error Comment
Could not find the DLL Glue Code LabWindows/CVI could not find the file that
header file HEADER FILE. Generation contains the prototypes for the functions in
Error the DLL. When generating glue code, ensure
that you specify the correct filename. When
loading a DLL, ensure that a header file with
the same base name as the DLL exists.
d modifier not valid in Non-Fatal d modifier cannot be used Fmt, FmtOut ,

Declarationof NAME does Compile You declared a variable or function twice,
not match previous Error and its type in the first declaration does npt
declaration at POSITION. match its type in the second declaration.
Declared parameter NAME Compile Declaration for a parameter in an old style
is missing. Error parameter list is missing, or the declaratign
does not match to any parameter name injthe
list. Ensure that the names in the old-style
function definition have corresponding
parameter declarations. A better course is
convert the old-style function definition to
the new-style function definition requiring
prototypes.
"defined" expects an Compile Preprocessatefined() operator requires
identifier argument. Error a single identifier argument; ensure that ypu
use an identifier and not an expression.
Dereference of a NUMBER Fatal Pointer expression you dereferenced points

Appendix A Errors and Warnings

Table A-1. Error Messages (Continued)

Error Message

Type Error

Comment

Dereference of function
pointer used as data.

Fatal
Run-time Error

You converted a function pointer to a
non-function pointer and then dereferenced
it. You can only execute functions and access
them as data.

Dereference of invalid
pointer expression.

Fatal
Run-time Error

Pointer expression you dereferenced is
invalid. It is probably the result of a previoys
invalid pointer operation.

Dereference of null
pointer.

Fatal
Run-time Error

Pointer expression you dereferenced has|the
valueNULL and cannot be dereferenced.

Dereference of
out-of-bounds pointer:
NUMBER bytes (NUMBER
elements) before start

of array.

Fatal
Run-time Error

Pointer expression you dereferenced is
invalid because it refers to a location before
the start of an array. The error message
shows the number of bytes and the number
of array elements in the array. The
expression is probably the result of previous
illegal pointer arithmetic.

Dereference of
out-of-bounds pointer:
NUMBER bytes (NUMBER
elements) past end of
array.

Fatal
Run-time Error

Pointer expression you dereferenced is
invalid because it refers to a location past the
end of an array. The error message shows|the
number of bytes and the number of array
elements past the end of the array. The
expression is probably the result of previous
illegal pointer arithmetic.

Dereference of pointer
to freed memory.

Fatal
Run-time Error

Pointer expression you dereferenced is
invalid because it refers to a location in
dynamic memory that you deallocated with
thefree function. Once memory is free, all
pointers into that block of memory becom
invalid.

[}

Dereference
pointer.

of unaligned

Fatal
Run-time Error
[UNIX only]

Pointer expression you dereferenced is
invalid because it points to an address tha
does not have the proper alignment for th
type of the dereferenced object.
SPARCSstation architecture requires that
16-bit objects be halfword aligned, 32-bit
objects be word aligned, and 64-bit objecis
be doubleword aligned.

D =

LabWindows/CVI Programmer Reference Manual A-12

© MNational Instruments Corporation

Appendix A Errors and Warnings

Table A-1. Error Messages (Continued)

Error Message

Type Error

Comment

Dereference of
uninitialized pointer.

Fatal
Run-time Error

Pointer expression you dereferenced is
invalid because you did not initialize it. It i
probably an uninitialized local variable. Yo
must initialize local variables before you us
them.

a2

5

Duplicate case label Compile Case label value appears more than once in
NAME. Error the switch statement. Eliminate any
duplicate case label values in the switch
statement.
Duplicate definition for Compile You redeclared a previously defined
NAMEpreviously declared Error parameter name; eliminate one of the
at POSITION. parameter declarations.
Duplicate field name Compile You have already declared the member name
NAME in TYPE. Error of thestruct orunion type. Eliminate one
of the member declarations from the structor
union type declaration.
Dynamic memory is Fatal LabWindows/CVI encountered corrupt data
corrupt. Run-time Error | while allocating or freeing dynamic
memory.
Empty declaration. Compile Error | You did not declare an object or type. Itis an
or Warning error if the empty declaration appears in the
context of an old-style parameter
declaration.
Elf library is out of Object Load LabWindows/CVI expects a more recent
date. Error version of the shared libranibelf.so)
that it uses to load ELF objects. As a resylt,
LabWindows/CVI is unable to read or write
object and library files.
‘enum NAME' declared Compile Enumeration you declared in the parameter
inside parameter list Warning list has scope only within the parameter list.
has scope only for this As a result, its type is incompatible with a|l
declaration. other types. You must declare the
enumeration type before you declare
function types that use it.
© National Instruments Corporation A-13 LabWindows/CVI Programmer Reference Manual

Appendix A

Errors and Warnings

Table A-1. Error Messages (Continued)

Error Message

Type Error

Comment

Error at or near
character NUMBER in the
format string: STRING.

Non-Fatal
Run-time Error

Error exists in the format string at index
NUMBERNUMBERS 1-based.

Error in EIf Library
encountered while
reading external
NAME.

module:

Object Load
Error

Object module is corrupted or is of a type
that LabWindows/CVI cannot load.

Error: compiling FILE
for DLL exports.

DLL Import
Library
Creation Error

When creating a DLL using the Include Fi
method for specifying exported symbols,
an error occurred while compiling the
include file.

Error: Incompatible
forfunctionorvariable
NAME inheaderFILE used
to specify exports.

type

DLL Link Error

When creating a DLL using the Include Fi
method for specifying exported symbols, t
type of the symbol in the include file did ng
match the type in the source file.

ne

—

nt

ter.

S
IS

Expecting an enumerator Compile Compiler expects an enumeration consta
identifier. Error identifier after the openingin anenumtype
declaration.
Expecting an identifier. Compile Compiler expects an identifier in the curre
Error syntactic context. Check the syntax of the
declaration, statement, or preprocessor
directive.
Expecting integer Compile pack pragma requires at least one parame
constant, push, or pop. Error
Extra default label. Compile default label has already appeared for th
Error switch statement. Eliminate the extraneoy
default label.
Extraneous O-width bit Compile Named bit field has no width and therefor
field TYPE NAME ignored. Warning has no storage allocated to it.

LabWindows/CVI Programmer Reference Manual

A-14

© MNational Instruments Corporation

Appendix A Errors and Warnings

Table A-1. Error Messages (Continued)

Error Message

Type Error

Comment

Extraneous formal
parameter
specification.

Compile
Error

This error occurs when the compiler is
processing what it assumes to be an old-sf
function declaration and encounters what
assumes to be the function’s parameter
names. If this is an old-style function
declaration, make sure that the paramete
names appear only in the function definitig
and not in any declaration of that function.
this is a new-style function declaration
(prototype), then probably the identifier th
the compiler assumes to be a parameter
name is really a typedef name. Make surg
that you previously declared the identifier
a typedef.

Extraneous identifier
NAME.

Compile
Error

Identifier appears in a context where the
compiler expects a type name, such as in
cast operation or as the operand of
sizeof() . Syntactically, a type name is a|
declaration of a function or an object of th
type that omits the identifier.

yle
it

r

—

2\

AS

a

Extraneous return value.

Compile
Error

Return statement appears in a void functi
and therefore no return value is necessar
eliminate the expression from the return
statement.

on

=

Failed to load DLL FILE.

Link Error

LabWindows/CVI could not find the DLL.
Ensure that it is in one of the default

directories searched by Microsoft Window
or that it includes a complete path name.

Failed to open external
module.

Object Load
Error

LabWindows/CVI could not open the
external module for loading. Ensure that t
external module has read access and that
did not inadvertently rename or delete it.

he
you

Field name expected.

Compile
Error

The compiler expects an identifier to folloy
a. or—.

© National Instruments Corporation

A-15

LabWindows/CVI Programmer Reference Manual

Appendix A Errors and Warnings

Table A-1. Error Messages (Continued)

too big.

Run-time Error

Error Message Type Error Comment
Field name missing. Compile Identifier is missing from a member (field)
Error declaration in &truct orunion type
declaration. Make sure that an identifier
follows the member type specifier.
Formatstringintegeris Non-Fatal Integer used in the format string is too large.

Found TYPE expected a

Compile Error

D

In an expression, the compiler expects th

(STRING == NUMBER).

function. or Warning name of a function or pointer to function tp
precede &. In a#pragma line, the compiler
expects the name of a function after the
pragma type.

Function definitions are | Compile Function definitions cannot appear in the

not allowed in the Error Interactive Execution window.

interactive window.

Function FUNCTION: Non-Fatal Library function could not perform its task

Run-time Error

The integeWWUMBERS either the function
return value or the value of a global variable
that explains why the function failed. Refer
to the library function reference material for
more information about the error.

11

with d, i, n, o, u, and
X specifiers.

Function FUNCTION has Glue Code Glue code generation or the DLL loading

an unsupported return Generation facilities do not support the return type of the

type size. Error function.

Function requires extra Glue Code Automatic glue code generation facility

code to handle Generation cannot generate complete code for this

Callbacks: FUNCTION. Error function because one of its parameters is|a
function pointer or it returns a function
pointer. You must generate and modify th
glue source code.

hmodifierisonlyvalid Non-Fatal You can only use thie modifier with integer

Run-time Error

format specifiers.

Header name literal
too long.

Compile
Error

Header name length exceeds

implementation limitations. Ensure that th
header name is properly terminated with a
or a", or shorten the string literal.

[¢)

LabWindows/CVI Programmer Reference Manual

A-16

© MNational Instruments Corporation

Appendix A Errors and Warnings

Table A-1. Error Messages (Continued)

must be static.

Execution window.

© National Instruments Corporation

A-17

Error Message Type Error Comment
lll-formed constant Compile Constant integer expression that appears jn a
integer expression. Error preprocessor directive is syntactically
invalid. Check the expression for trailing
tokens.
ll-formed hexadecimal Compile Ensure that a hexadecimal character
escape sequence \XCHAR. Error ([0-9, a—f, or A—F]) follows th& escape
sequence introduction.
ll-formed hexadecimal Compile Ensure that a hexadecimal character
escape sequence. Error (0-9, a—f, or A—F]) follows th& escape
sequence introduction.
lllegal argument(s) to Fatal One or more of the arguments to the library
library function. Run-time Error | function are invalid. Refer to the library
documentation for the function.
lllegal case label. Compile Case label appears outside the context of a
Error switch statement. Remove the case label
lllegal character CHAR. Compile Character or character escape sequence
Error outside the legal character set for an ANS| C
source file appears in a context other than a
character string or character literal.
lllegal continue Compile continue statement appears outside a lopp
statement. Error statement. Remove tleentinue
statement.
lllegal default label. Compile default label appears outside the context
Error of a switch statement. Remove tlefault
label.
lllegal expression. Compile Compiler encountered the wrong type of
Error token while parsing an expression where |it
expected an identifier, string literal, integer
constant, floating constant, pr
lllegal extern Compile No Interactive Execution window definitions
definition of NAME; all Error are visible outside the scope of the
interactive window Interactive Execution window. You cannot
variable definitions initialize external symbols in the Interactivie

LabWindows/CVI Programmer Reference Manual

Appendix A Errors and Warnings

Table A-1. Error Messages (Continued)

Error Message Type Error Comment

llegal formal parameter Compile Parameter type of void appears in a functi

types. Error prototype declaration that has more than g
argument. Remove the void parameter ty
or change the function prototype so that it
contains only the single void parameter ty

lllegal header name; Compile Unexpected character follows #include

#include expects "FILE" Error where a header filename of the formiLE "

or <FILE>. or <FILE> is expected. Itis also possible th
the header filename beginning quote
character is different than the expected
closing quote character, such<#SLE ".

lllegal initialization Compile Ensure that the initialization is not for a

for NAME. Error function declaration rather than a pointer
a function.

lllegal initialization Compile Parameter declarations cannot have defa

for parameter. Error value initializations in ANSI C. Eliminate
the initialization.

lllegal initialization Compile Parameter declarations cannot have defa

for parameter NAME. Error value initializations in ANSI C. Eliminate
the initialization.

lllegal initialization Compile You attempted to initialize an extern

of extern NAME. Error declaration that appears in a local scope.
Eliminate the initialization.

lllegal return Compile Function is declared with an illegal return

type TYPE. Error type, or a return statement expression typ
not the same as the return type of the
function in which it appears. If the
diagnostic is for a function declaration,
ensure that the return type is not an array|
type or a function type. If the diagnostic i
for a return statement, the containing
function is probably declared void and cal
contain no expression in its return statemg

ne
pe

to

ult

ult

eNnt.

LabWindows/CVI Programmer Reference Manual

A-18

© MNational Instruments Corporation

Appendix A Errors and Warnings

Table A-1. Error Messages (Continued)

an array of function pointers instead.

Error Message Type Error Comment

lllegal return Compile Return statement expression type is not the

type; found TYPE Error same as the return type of the function in

expected TYPE. which it appears. Ensure that the type of the
return expression is consistent (assignment
compatible) with the function return type.

lllegal separator Non-Fatal Either the separation charactersnd> were

character or illegal Run-time Error | not present in the format string, or they were

position of separator in the wrong place.

character.

lllegal source filename Compile Only token that can follow the line number

specified for #line; Error specification in atline preprocessor

s-char-sequence directive is an optional string literal

expected. specifying a source filename. A sequence| of
tokens also can follow thgine token if,
after the compiler performs macro expansion
on the source line, the source line conforms
to one of the two allowable forms #ifne
preprocessor directives:
#line line-number-digit-sequence
#line line-number-digit-sequence
"filename”

lllegal statement Compile During compilation of a sequence of

termination. Error statements, the compiler encountered a
token that it expected either to begin a new
statement, begin asise clause of aif
statement, be a statement label, be a casge
label, or terminate a compound statement,
such ag . Depending on the context of the
location of where the compiler issued the
diagnostic, ensure that the statement syntax
is correct for the cases listed above.

lllegal type array Compile You attempted to declare an array of

of TYPE. Error functions. You probably intended to declare

© National Instruments Corporation

A-19

LabWindows/CVI Programmer Reference Manual

Appendix A Errors and Warnings

Table A-1. Error Messages (Continued)

Error Message

Type Error

Comment

lllegal type const TYPE.

Compile
Error

You used more than one qualifier, such ag
const oOrvolatile ,in atype specification;
for examplegonstconstint .Donotuse
theconst andvolatile qualifiers more
than once each in the same type.

lllegal type for symbol
'DlIMain’: TYPE.

Compile
Error

DliMain does not conform to the accepte
prototype.

int__stdcall DIIMain
(HINSTANCE hinstDLL,
DWORD fdwReason,

LPVOID IpvReserved);

lllegal type for symbol
‘WinMain": TYPE.

Compile
Error

WinMain does not conform to the accepte
prototype.

int__stdcall WinMain
(HINSTANCE hinstance,
HINSTANCE hPrevinstance,
LPSTR IpszCmdLine,

int nCmdShow);

lllegal type volatile
TYPE.

Compile
Error

You used more than one qualifier, such ag
const oOrvolatile ,in atype specification;
for examplegonstconstint .Donotuse
theconst andvolatile qualifiers more
than once each in the same type.

o

o

lllegal use of type
name NAME.

Compile
Error

You used a typedef name in the context o
primary expression. If you intended to use

type cast, parenthesize the typedef name|

Otherwise you must use a macro name,
enumeration constant, variable name, or
function name in this context.

fa

lllegalvaluematchedto
asterisk.

Non-Fatal
Run-time Error

Integer argument that matches to an aste
(*) in the format string has an invalid valu
given the context in which it appears.

isk

D

LabWindows/CVI Programmer Reference Manual

A-20

© MNational Instruments Corporation

Appendix A Errors and Warnings

Table A-1. Error Messages (Continued)

=

®

Error Message Type Error Comment

lllegal variable Compile Change the variable declaration to be either

declaration; only static Error static Orextern

and extern variable

classesarevalidinthe

interactive window.

Import Variables cannot Compile You used a global variable marked as

be used in global Error __import or declspec(dllimport) in

variable an initializer of another variable.

initialization.

Includefilesnestedtoo Compile Number of nestedinclude files exceeds

deeply. Error compiler limits. Reduce the number of
nesteddinclude preprocessor directives.

Inconsistent linkage for Compile Current declaration of the identifier is

NAMEpreviously declared Error inconsistent with a previous declaration of

at POSITION. the same identifier with regard to linkage.
Ensure that all declarations of the identifie
that you intend to bstatic do not conflict
with declarations without th&tatic
keyword in the same scope.

Inconsistent type Link Error You declared two or more external symbals

declarations for with the same name but not the same typ

external symbol NAME in Check each program file that contains an

modules FILE1 and FILE2. external declaration of the symbol for type
consistency.

Initializer exceeds Compile Number of bits necessary to represent the

bit-field width. Warning initialization value of a bit field exceeds its
declared width. The compiler truncates the
initialization value to fit the bit field. The
initialization value must be smaller or the hit
field declaration must be wider.

Initializer must be Compile Initializer must be an expression that

constant. Error conforms to the semantics for a constant
expression.

Insufficient number of Compile Function expects more arguments than you

arguments to FUNCTION. Error passed to it. Check the function declaration
for the number of parameters to the function.

© National Instruments Corporation A-21 LabWindows/CVI Programmer Reference Manual

Appendix A Errors and Warnings

Table A-1. Error Messages (Continued)

to library function.

Run-time Error

function is invalid. It is probably the result
a previous invalid pointer operation.

Error Message Type Error Comment

Insufficient system Link Error There is not enough memory to run the code

memory for Interactive in the Interactive Execution window.

Window

Insufficient system Link Error There is not enough memory to link the

memory for project. project.

Insufficient user data Link Error There is not enough memory to link the

memory for project. project.

Invalid hexadecimal Compile A token the compiler assumes to be a

constant. Error hexadecimal constant is badly formed.
Ensure that token conforms to the syntax for
hexadecimal constants, especially that a
valid hexadecimal digit follows thex or
0X prefix.

Invalid initialization Compile Expression that initializes the object

type; found TYPE Error declaration is type incompatible with the

expected TYPE. object. Ensure that the initialization
expression is assignment compatible with
the object type. Ensure that all constituent
values of an aggregate expression matchithe
corresponding positional types of the
aggregate type, such as member types of a
struct Orunion type.

Invalid octal constant. Compile A token the compiler assumes to be an ogtal

Error constant is badly formed. Ensure that the

token conforms to syntax for octal constants,
especially that a valid octal digit follows the
leading0 prefix.

Invalidoperandofunary Compile Itis illegal to take the addresg frefix

&; NAME is declared Error operator) of an object you declare to be of

register. register class. Remove thegister
keyword from the object declaration if you
want to apply the address operator to it.

Invalid pointer argument Fatal Pointer expression you passed to the library

f

LabWindows/CVI Programmer Reference Manual

A-22

© MNational Instruments Corporation

Appendix A Errors and Warnings

Table A-1. Error Messages (Continued)

Error Message

Type Error

Comment

Invalid size for a real.

Non-Fatal
Run-time Error

4 and 8 are the only valid sizes that you dan
specify with theb modifier for thef (real)
specifier.

Invalid size for an
integer.

Non-Fatal
Run-time Error

1, 2, and 4 are the only valid sizes that yq
can specify with thé modifier for thei , d,
X, 0, andc modifiers.

c

Invalid storage class.

Compile
Error

extern is the only allowable explicit
storage class specifier for a function
declaration that has block scope.

Invalid struct field
declarations.

Compile
Error

Compiler encountered an invalid token while
processing a struct or union type declaration.
The compiler expected a token that begins a
member type specifier where the type
specifier is one ofoid , char , short ,int ,
long ,float , double ,signed ,unsigned ,
<struct-or-union-specifier >,
<enum-specifier > or

<typedef-name >.

Invalid type argument
TYPE to sizeof.

Compile
Error

You appliedsizeof operator to a function
type or incomplete struct or union type. A
function type has no size, and the size ofjan
incomplete struct or union type is unknown
before its full declaration.

Invalid type
specification.

Compile
Error

Combination of type specifiers is
incompatible. You can use the type specifier
short only in combination witlint . You
can use the type specifieng only in
combination withint anddouble . You can
use the type specifiesigned and
unsigned only in combination with one
of the basic integer typeshar , short

int ,long).

© National Instruments Corporation

A-23

LabWindows/CVI Programmer Reference Manual

Appendix A

Errors and Warnings

Table A-1. Error Messages (Continued)

Error Message

Type Error

Comment

Invalid union field
declarations.

Compile
Error

Compiler encountered an invalid token whi
processing a struct or union type declarati
The compiler expected a token that begin
member type specifier where the type
specifier is one ofoid , char , short ,int ,
long ,float ,double ,signed ,unsigned ,
<struct-or-union-specifier >,
<enum-specifier > or

<typedef-name >.

le
DN,
5a

Invalid use of TOKEN.

Compile
Error

This error occurs during compilation of a
type specification. The specifiddKENS

not valid in the context of the type specifig
Two common errors are use of a storage
class other tharegister ~ for a parameter
declaration and using the storage class

register for a global object declaration.

-

| format specifier not
valid in
Fmt/FmtOut/FmtFile.

Non-Fatal
Run-time Error

You can use the format specifier only in
Scan, ScanOut , andScanFile

Imodifierisonlyvalid
with d, i, n, 0, u, and
X specifiers.

Non-Fatal
Run-time Error

I format specifier is valid only for integer
format specifiers.

L modifierisonlyvalid
with e, f, and g
specifiers.

Non-Fatal
Run-time Error

L modifier, which specifies that the argume
is a long double, can be used only in the
floating point formats.

Imodifierisonlyvalid
withe,f,g,d,i,n,o0,
u, and x specifiers.

Non-Fatal
Run-time Error

I format specifier is valid only for integer
and real format specifiers.

Left operand of —> has Compile Left operand of the>-dereference operatio

incompatible type TYPE. Error is either not a pointer tetruct or union
type, or it is not a pointer type at all.

Left operand of . has Compile Left operand of the member selection

incompatible type TYPE. Error operation must bestruct orunion type.

LabWindows/CVI Programmer Reference Manual A-24

© MNational Instruments Corporation

Appendix A Errors and Warnings

Table A-1. Error Messages (Continued)

Error Message Type Error Comment
Library function error Non-Fatal Library function could not perform its task.
(STRING == NUMBER). Run-time Error | The integeWUMBERS either the function

return value or the value of a global variable
that explains why the function failed. Refe
to the library function reference material fq
more information about the error.

= =

Lvalue required. Compile An lvalue is required in this context. Ensure
Error that the expression conforms to the

semantics of an Ivalue.

Macro expansion too Compile Macro expansion has exceeded the compjler

large. Error implementation size limitation.

Macro parameter must Compile # operator requires that a macro parametger

follow # operator. Error immediately follow it in a macro
replacement list.

Matching push not Compile pack pragma used a named pop that does|not

encountered or already Error balance with the push of the same name.

popped.

Missing {in Compile Initialization of astruct , union , orarray

initialization of TYPE. Error type, is missing a startigfor an aggregate
initialization value.

Missing #endif Compile #if | #ifdef preprocessor directive must

Error have a correspondinggndif in the same

source file.

Missing #include file Compile No include filename follows th&include

name; #include expects Error preprocessor directive. Ensure that a

"FILE" or <FILE>. filename of the correct form follows

#include or that any macro that follows
#include expands into the correct form far
an include filename.

Missing '. Compile Termination single quote characteis
Error missing from a character or wide character
literal.
Missing CHAR. Compile Check for unterminated string or character
Error literal.

© National Instruments Corporation A-25 LabWindows/CVI Programmer Reference Manual

Appendix A Errors and Warnings

Table A-1. Error Messages (Continued)

Error Message

Type Error

Comment

Missing argument to
variable argument
function.

Fatal
Run-time Error

Variable argument function requires at legst

one argument beyond the last formal
parameter.

Missing array size.

Compile
Error

You attempted to define a block scope object

or type that is an array which has an elem

D
=}
—

type that is an incomplete array type, such as

an array with unspecified size. The array
element type must be a complete array ty
such as an array type with a known size.

Missing format string
integer.

Non-Fatal
Run-time Error

Integer that corresponds to an asterisk in
format string is missing. Incorrect orderin
of the arguments can cause this. This inte
must precede the actual argument.

ger

re

12

cl.

Missing identifier. Compile Identifier that specifies the object name is
Error missing from the object declaration. Ensu
that an identifier follows the object type
specifier.
Missing label in goto. Compile goto statementis missing an identifier lab
Error
Missing parameter name Compile Parameter list of the function definition is
to function FUNCTION. Error missing an identifier for one of its paramet
declarations. All parameter declarations f
a function definition must include an
identifier except for the special case of a
parameter list consisting of a single
parameter of typeoid , in which there must
not be an identifier.
Missing parameter type. Compile Type specifier is missing from a parameteg
Error declaration in a new-style (prototype)

function declaration. Ensure that the
function declaration is not mixing old-stylg
parameter declarations with new-style
(prototype) declarations.

LabWindows/CVI Programmer Reference Manual

A-26

© MNational Instruments Corporation

Dr

Appendix A Errors and Warnings

Table A-1. Error Messages (Continued)

Error Message Type Error Comment
Missing prototype. Compile Function declaration or call is for a functig
Error without prototype declaration information.
The compiler issues the diagnostic if the
Require Function Prototypes compiler
option is enabled.
Missing return value. Fatal Function does not return a value, althoug

Run-time Error

you declared it with a return type. If you di
not intend for the function to return a valu
you must declare it asvaid function.
Otherwise, you must useeurn

statement to return a value.

o =2

Missing return value.

Compile
Warning

Non-void function does not return a value
Add a return statement with an expression
the function return type. The compiler issu
the diagnostic if the Require Return Valug
for Non-void Functions compiler option is
enabled.

of

Missing right
bracket (]).

Fatal
Run-time Error

Format string has mismatched brackets.

in string argument.

Missing struct tag. Compile Tag name is missing from an incomplete
Error struct or union declaration.
Missing terminating null Fatal Library function expects a string argumen

Run-time Error

but the argument you passed points to an
array of characters that is not
null-terminated.

ty

ne

subject of an #undef.

Missing union tag. Compile Tag name is missing from an incomplete
Error struct or union declaration.

Multiply defined symbol Link Error The files being linked contain more than o

NAME in modules FILE1 definition for NAME

and FILE2.

Naked functions are not Compile LabWindows/CVI does not work with the

supported. Error naked keyword.

NAME is a predefined Compile Make sure that the name you specify for t

macro and cannot be the Error #undef preprocessor directive is not that

Df

a predefined macro.

© National Instruments Corporation

A-27

LabWindows/CVI Programmer Reference Manual

Appendix A Errors and Warnings

Table A-1. Error Messages (Continued)

Error Message Type Error Comment

No data relocation Link Error External object module does not contain the

section found for relocation information necessary to link it in

external module: FILE. with the rest of the project. You cannot load
an executable as an object module.

No data section Link Error External object module does not contain the

found for external initialized data necessary to link it in with

module: FILE. the rest of the project. Ensure that you buiilt
the external object file correctly.

No pack settings Compile pack pragma used a pop when there were/no

currently pushed. Error pushes.

No symbol table Link Error External object module does not contain the

found for external symbol table information necessary to link]it

module: FILE. in with the rest of the project. Ensure that
you built the external object file correctly.

No text relocation Link Error External object module does not contain the

section found for relocation information necessary to link it in

external module: FILE. with the rest of the project. You cannot load
a linked executable as an object module.

No text section Link Error External object module does not contain the

found for external initialized instruction data necessary to link

module: FILE. it in with the rest of the project. Ensure that
you built the external object file correctly.

Non-terminated Fatal You attempted to pass an address list array

address list. Run-time Error | that you did not terminate witkl to a
GPIB-488.2 function that expects the arrdy
to terminate with-1.

Not enough parameters. Non-Fatal Number of arguments the format string

Run-time Error | expects is more than the number of

arguments you passed in.

Not enough space for Non-Fatal Block of memory you obtained from

casting expression Run-time Error | malloc orcalloc is not large enough for &

to TYPE. single object of typ&YPEand cannot be cast
to that type.

LabWindows/CVI Programmer Reference Manual

A-28

© MNational Instruments Corporation

Appendix A Errors and Warnings

Table A-1. Error Messages (Continued)

Error Message

Type Error

Comment

Null Pointer.

Fatal
Run-time Error

Pointer expression you passed to the libra
function has the valugULL, which is not a
valid value for the function.

Nullpointerargumentto
library function.

Fatal
Run-time Error

Pointer expression you passed to the libra
function has the valugULL, which is not a
valid value for the function.

to the function which set up the waveform
buffer.

Ary

Al

=

Yy

NUMBER is an illegal Compile Make sure that the size of the array

array size. Error declaration is > 0.

NUMBER s anillegal bit Compile Make sure that the size you specified for the

field size. Error bit field is> 0 and< 32.

NUMBER line(s) Compile Occurs when reading in source or include

truncated. File set to Error file. Lines are limited to 254 characters,

read-only. where tabs count as 1. Use the editor in
which you created the file to split the line.

Number of arguments Non-Fatal Number of arguments exceeds the maximum

exceed the maximum Run-time Error | that the formatting functions support.

supported.

Number of paints is too Fatal Message appears when the

large for current Run-time Error | numberofPoints parameter of a data

waveform buffer. acquisition waveform generation function |s
larger than theumberofPoints parameter

hat

>

pCt

Object module contains Object Load External object module contaifgR

unsupported FAR Error pointers, which you cannot implement in

pointers. LabWindows/CVI.

One of the arguments to Glue Code One of the function arguments has atype t

FUNCTION has an Generation the LabWindows/CVI glue code generatio

unsupported size. Error and DLL loader do not support.

Only object modules Link Error External object module contains OMF

produced by WATCOM C 386 records that LabWindows/CVI does not

fully supported. recognize or support. Ensure that the objé
file was compiled with a Watcom C 386
compiler with the recommended options.

© National Instruments Corporation A-29 LabWindows/CVI Programmer Reference Manual

Appendix A Errors and Warnings

Table A-1. Error Messages (Continued)

A%

is

argument (before start
of array).

Run-time Error

function is invalid because it refers to a

location that is before the start of an array.

The expression is probably the result of
previous illegal pointer arithmetic.

Error Message Type Error Comment
Operands of ‘=* have Compile Function pointer is assigned an expressign
incompatible calling Error that does not match its calling convention
conventions.
Operands of [one from Compile Types of the two operands to the
setofbinaryoperators] Error binary operator are illegal according to thg
have illegal types TYPE ANSI C standard.
and TYPE.
Operands of [one from Compile Types of the two operands to the binary
setofbinaryoperators] Error operator are not compatible according to the
have incompatible types. ANSI C standard.
Operand of unary Compile Type of the operand to the unary operator
OPERATOR has illegal Error not valid.
type TYPE.
Out-of-bounds pointer Fatal Pointer expression you passed to the libra

=

y

Out-of-bounds pointer
argument (past end of
array).

Fatal
Run-time Error

Pointer expression you passed to the libra
function is invalid because it refers to a
location past the end of an array. The
expression is probably the result of previo
illegal pointer arithmetic.

i1

=

y

Out-of-bounds pointer
arithmetic: NUMBERytes
(NUMBERelements) before
start of array.

Non-Fatal
Run-time Error

Pointer arithmetic expression is invalid
because the resulting value refers to a
location before the start of an array. The
error message shows the number of byte
and number of array elements before the
beginning of the array.

Out-of-bounds pointer
arithmetic: NUMBERytes
(NUMBER elements) past
end of array.

Non-Fatal
Run-time Error

Pointer arithmetic expression is invalid
because the resulting value refers to a
location past the end of an array. The errg
message shows the number of bytes and
number of array elements past the end.

Out of memory for user
protection information.

Fatal
Run-time Error

Could not allocate memory required to stg
user protection information.

re

LabWindows/CVI Programmer Reference Manual

A-30

© MNational Instruments Corporation

Appendix A Errors and Warnings

Table A-1. Error Messages (Continued)

Error Message Type Error Comment

Overflow in constant Compile Value of a constant or constant expression

CONSTANT. Warning exceeds the limits of the type. Ensure that
value does not exceed the maximum valu
for the expression type.

Overflow in constant Compile Value of a constant or constant expression

expression. Warning exceeds the limits of the type. Ensure that
value does not exceed the maximum valu
for the expression type.

Overflow in floating Compile Value of a constant or constant expression

constant CONSTANT. Warning exceeds the limits of the type. Ensure that
value does not exceed the maximum valu
for the expression type.

Overflow in hexadecimal Compile Value of a constant or constant expression

escape sequence. Warning exceeds the limits of the type. Ensure that
value does not exceed the maximum valu
for the expression type.

Overflowinoctalescape Compile Value of a constant or constant expression

sequence. Warning exceeds the limits of the type. Ensure that
value does not exceed the maximum valu
for the expression type.

Overflow in value for Compile Value of a constant or constant expression

enumeration constant Error exceeds the limits of the type. Ensure that

CONSTANT. value does not exceed the maximum valu
for the expression type.

Overflow occurred during Non-Fatal Number was too large to store in the integd

the conversion of the Run-time Error | of the specified size.

int. The absolute value

is too big for the size.

Overflow occurred during Non-Fatal Number was too large to store in a 4-byte

the conversion of the Run-time Error | real.

float. The numberistoo

big for type float.

Overflow occurred during Non-Fatal Number was too large to store in the integ

the conversion of the Run-time Error | of the specified size.

int. The signedvalueis

too big for the size.

© National Instruments Corporation

A-31

LabWindows/CVI Programmer Reference Manual

Appendix A

Errors and Warnings

Table A-1. Error Messages (Continued)

Error Message Type Error Comment
Packpragmavalidvalues Compile pack pragma alignment value parameter
are 1,2, 4, 8, and 16. Error must bet, 2, 4, 8, or 16.

Parameter type Non-Fatal Parameter type is not compatible with the

argument might be missing.

incompatible ~ with format Run-time Error | type that the format string expects.

specifier. An argument is either missing or of the
wrong type.

Parameter type mismatch: Non-Fatal Parameter type does not match the type that

expecting TYPE but Run-time Error | the format string expects. The arguments

found TYPE. might not be in the right order, or an

Pointer arithmetic
involving invalid
pointer.

Non-Fatal
Run-time Error

Pointer arithmetic expression is invalid
because one of the subexpressions conts
an invalid pointer.

ins

Pointer arithmetic
involving null pointer.

Non-Fatal
Run-time Error

Pointer arithmetic expression is invalid
because one of the subexpressions contg
the valueNULL

ins

Pointer arithmetic
involving pointer to
freed memory.

Non-Fatal
Run-time Error

Pointer arithmetic expression is invalid
because one of the subexpressions contai
pointer to dynamic memory that you
deallocated with théee function. Once
memory is free, all pointers into that block
memory are invalid.

ns a

Pointer arithmetic
involving pointer to
function.

Non-Fatal
Run-time Error

Pointer arithmetic expression is invalid
because one of the subexpressions is a
function pointer.

Pointer arithmetic
involving uninitialized
pointer.

Non-Fatal
Run-time Error

Pointer arithmetic expression is invalid
because one of the subexpressions conts
an uninitialized pointer. It is probably an
uninitialized local variable.

ins

Pointer comparison
involving address of
nonarray object.

Non-Fatal
Run-time Error

One of the pointer expressions in the
comparison is invalid because it does not
point into an array. Both expressions in
pointer comparisons must point into the
same object.

LabWindows/CVI Programmer Reference Manual

A-32

© MNational Instruments Corporation

Appendix A Errors and Warnings

Table A-1. Error Messages (Continued)

Error Message

Type Error

Comment

Pointer is invalid.

Non-Fatal
Run-time Error

Pointer argument to the function contains
invalid address.

Pointer points to freed
memory.

Non-Fatal
Run-time Error

Pointer argument to the function points to
memory that you already freed.

Pointer subtraction
involving address of
nonarray object.

Non-Fatal
Run-time Error

One of the pointer expressions in the
subtraction is invalid because it does not
point into an array. Both expressions in

pointer subtractions must point into the same

object.

Pointertoalocalis an Compile Value returned from the function is a pointer

illegal return value. Error to a parameter or local variable. Because the
lifetime of a parameter or local variable ends
when you return from the function, any
pointer to such an object is invalid.

Pointer to a parameter Compile Value returned from the function is a pointer

is an illegal return Error to a parameter or local variable. Because the

value. lifetime of a parameter or local variable engds
when you return from the function, any
pointer to such an object is invalid.

Pointer to free memory Fatal Pointer expression you passed to the library

passed to library Run-time Error | function is invalid because it refers to a

function. location in dynamic memory that you
deallocated with the functidiree . Once
memory is free, all pointers into that block of

memory are invalid.

pragma pack(pop...)
not set alignment. Use
separate pack pragma.

does

Compile
Warning

You used a pragma pop with an alignmen
value. Use separapack pragmas for
popping and setting the alignment value.

© National Instruments Corporation

A-33

LabWindows/CVI Programmer Reference Manual

Appendix A Errors and Warnings

Table A-1. Error Messages (Continued)

Error Message Type Error Comment

Project not linked. Link Warning This error occurs when the compiler repoits
one or more link errors in the Interactive
Execution window and the projectis not inja
linked state. This warning provides a
possible explanation for the link errors. The
Interactive Execution window does not link
to the project unless the projectis in a linked
state. If you are referencing project symbgls
from the Interactive Execution window, use
theBuild Project command from th8uild
menu to compile and link the project first.

Qualified function type Compile Any qualification of a function declaration is

ignored. Warning extraneous but harmless.

Read error. Link Error Error has occurred while attempting to read
a file. Ensure that the file has access
permission and that it is in the correct
format.

Redeclaration of ‘%s’ Compile Function has been redeclared with a different

with different calling Error calling convention.

convention, previously

declared at %w.

Redeclaration of macro Compile Parameter name has already been used once

parameter NAME. Error by the macro. Choose another parameter
name.

Redeclaration of NAME. Compile Declared name conflicts with a previous

Error declaration in the same scope and name
space. You have already used the name in
this scope. Choose another name for this
declaration.

Redeclaration of NAME Compile Declared name conflicts with a previous

previously declared at Error declaration in the same scope and name

POSITION. space. You have already used the name in
this scope. Choose another name for this
declaration.

LabWindows/CVI Programmer Reference Manual

A-34

© MNational Instruments Corporation

Appendix A Errors and Warnings

Table A-1. Error Messages (Continued)

S

[}

expected.

Run-time Error

Error Message Type Error Comment

Redefinition of label Compile You already used the statement label in th

NAME previously defined Error function. A statement label must be uniqu

at POSITION. within the function in which you use it.

Redefinition of Compile Macro has already been defined with a

macro NAME. Error replacement list different from the current
definition. The same macro definition for &
name may appear in the same file more than
once as long both definitions agree in name
and number of parameters and their
replacement lists are identical.

Redefinition of NAME Compile You have already defined the object or

previously defined at Error function in the current scope. Eliminate one

POSITION. of the two definitions.

Reference parameter Non-Fatal Function expected a pointer but you passed it

a scalar.

Register declaration
ignored for TYPE NAME.

Compile
Warning

register storage class conflicts with the
semantics of the type declared for the object.
If you declared the object to be of an array
struct , orunion type, or you qualified it
asvolatile , remove theegister

keyword from the declaration.

Register declaration
ignored for TYPE
parameter.

Compile
Warning

register storage class conflicts with the
semantics of the type you declared for the
parameter prototype. If you declared the
object to be oftruct orunion type, or
you qualified it awolatile , remove the
register keyword from the prototype
parameter declaration.

Repeat value not valid
with s/l format
specifiers.

Non-Fatal
Run-time Error

You cannot use a repeat value with ¢hend
| format specifiers.

Result of unsigned
comparison is constant.

Compile
Warning

Result of UNSIGNED INTEGER
EXPRESSION> = 0 always evaluates
to 1.

© National Instruments Corporation

A-35

LabWindows/CVI Programmer Reference Manual

Appendix A

Errors and Warnings

Table A-1. Error Messages (Continued)

Error Message Type Error Comment

Segment must be of Load Error External object module contains an

class CODE, DATA, BSS, unknown segment class. Object modules

or STACK: segment must not contain any specially-named

name NAME. segments.

Segment must be USE32: Link Error External object module you loaded contaips

segment name NAME. unsupported 16-bit segments.
LabWindows/CVI supports only 32-bit
object modules. Ensure that the external
object module was compiled with a 32-bit
compiler.

'signed' type mismatch Compile This warning is issued when the signs of the

between TYPE and TYPE. Warning Ivalue and rvalue expressions in a pointer
assignment operation do not agree. Both
Ivalue and rvalue are pointers to integer
types but they point to integer types of
differing signs, which might cause problems
if you later dereference the Ivalue. This
diagnostic is issued if you select the Enable
Signed/Unsigned Pointer Mismatch
Warning compiler option.

Simple/Array conflict Non-Fatal Array you passed to the function matches|to

with format specifier.

Run-time Error

a format specifier for a scalar, or a scalar yjou
passed to the function matches to a format
specifier for an array.

Size of array of TYPE Compile Size of the array or struct/union type exceeds
exceeds SIZE bytes. Error the compiler limitation ofNT_MAX bytes.

Size of TYPE exceeds Compile Size of the array or struct/union type excegds
SIZE bytes. Error the compiler limitation ofNT_MAX bytes.
sizeof applied to a bit Compile Do not use theizeof() operation on a

field. Error bit-field.

Specified width is too Non-Fatal Width you specified for a format specifier

small to read the

Run-time Error

was not large enough to contain a complete

number. number. Example: you specify a width2of
for a float, and the number is02 ; the
negative sign and decimal point do not
constitute a valid number.
LabWindows/CVI Programmer Reference Manual A-36 © National Instruments Corporation

Appendix A Errors and Warnings

Table A-1. Error Messages (Continued)

Error Message

Type Error

Comment

Stack Overflow.

Fatal
Run-time Error

Program exceeds the stack limit. Change the
size of the stack in the Run Options dialog
box, if you think that the code is executing
correctly. Otherwise, ensure that the
program does not contain any infinite
recursion.

=

it.

invalid pointer.

‘struct NAME’ declared Compile Structure declared in the parameter list has
inside parameter list Warning scope only within the parameter list. As a
has scope only for this result, its type is incompatible with all othe
declaration. types. You must declare the structure type

before you declare function types that use
Structures containing Compile Structures that contain arrays with
unspecified size array Error unspecified size must contain at least
fields must contain one other non-zero size member.
other fields. LabWindows/CVI supports these types

of structures as an extension to the

ANSI C standard.
Subtraction involving Non-Fatal One of the pointer expressions in the

Run-time Error

=3

subtraction is invalid. It is probably the resd
of a previous invalid pointer operation.

Subtraction involving
null pointer.

Non-Fatal
Run-time Error

One of the pointer expressions in the
subtraction has the valiaLL Both
expressions in pointer subtractions must
point into the same array object.

Subtraction involving
uninitialized pointer.

Non-Fatal
Run-time Error

One of the pointer expressions in the
subtraction is invalid because you did not
initialize it.

Subtraction of pointers
to different objects.

Non-Fatal
Run-time Error

Pointer expressions in the subtraction point
to two distinct objects. Both expressions in
pointer subtractions must point into the same
array object.

© National Instruments Corporation

A-37

LabWindows/CVI Programmer Reference Manual

Appendix A Errors and Warnings

Table A-1. Error Messages (Continued)

Error Message

Type Error

Comment

Subtraction of pointers
to freed memory.

Non-Fatal
Run-time Error

One of the pointer expressions in the
subtraction is invalid because it refers to &
location in dynamic memory that you

deallocated with the functidiree . Once
memory is free, all pointers into that block of
memory are invalid.

Switch statement with Compile Switch statement contains nase or
no cases. Warning default label.
Symbol NAME defined Link Error In Borland mode, multiple modules must npt

in modules FILE and
FILE. In Borland

mode, multiple modules
must not contain
uninitialized

definitions of the

same global variable.
Borland creates a
separate variable
for each definition.
LabWindows/CVI
linkers resolve all
definitions to the same
variable. If you want
separate variables, use
different names or the
"static" keyword. If

you want one variable,
change all definitions
except one to "extern”
declarations.

and other

D

contain uninitialized definitions of the sam
global variable. Borland creates a separa
variable for each definition.

LabWindows/CVI and other linkers resolv
all definitions to the same variable. If you
want separate variables, use different names
or the “static” keyword. If you want one
variable, change all definitions except one|to
“extern” declarations.

(0]

9

Symbol NAME exported
from header FILE not
found in DLL.

DLL Link Error
or Import
Library
Creation Error.

When you used the Include File method fpr
specifying the symbols to export from a
DLL, one of the symbols you declared in the
include file was not in the DLL project. Or,
when you created import libraries from an
include file and a DLL, one of the symbol$
you declared in the include file was not in
the DLL.

LabWindows/CVI Programmer Reference Manual

A-38

© MNational Instruments Corporation

Appendix A Errors and Warnings

Table A-1. Error Messages (Continued)

fewer parameters.

Error Message Type Error Comment

Syntax error; found Compile Syntax error occurred because the compiler

TOKEN1 expecting TOKEN2. Error found TOKENI1instead ofTOKEN2

The __cdecl calling Compile Function with an explicit_cdecl qualifier

convention is not Error returns adouble , float or structure, and

supported with functions your current compatible compiler is

returning floats, Watcom. Either remove the qualifier or

doubles, or structures change the function.

in WATCOM Compatibility

Mode.

The callback function, Non-Fatal When trying to match a callback name you

NAME, differs only by a Run-time Error | specified in auir file to the callback

leading underscore from function, the compiler found two symbols

another function or that are the same except for a leading

variable. Change one of underscore. Resolve this ambiguity by

the names for proper changing one of the names.

linking.

Thread data is not Compile You cannot implement thread-local storage

supported. Error in LabWindows/CVI.

Too many arguments to Compile Declaration for functio®mUNCTIONcontains

FUNCTION. Error fewer parameters than the number of
arguments you passed in this function call.

Too many arguments to Non-Fatal You passed more arguments to the variahle

variable argument Run-time Error | argument function than it expected. The

function. extra arguments do not affect the function
call in any way.

Too many function Compile Number of parameter declarations exceeds

parameters. Error compiler limitations. Declare the function
with fewer parameters.

Too many initializers. Compile Size of the initializer exceeds the size of the

Error object. Ensure that the initializer matches the

number/size of the object type.

Too many macro Compile Number of parameter declarations exceegs

parameters. Error compiler limitations. Declare the macro with

© National Instruments Corporation

A-39

LabWindows/CVI Programmer Reference Manual

Appendix A Errors and Warnings

Table A-1. Error Messages (Continued)

Error Message Type Error Comment
Too many parameters. Non-Fatal Number of parameters you passed to a
Run-time Error | function exceed the number of parameters
the format string expects.
Type error in argument Compile Function or function pointer you passed tq a
%d to %s, calling Error function does not have the correct calling
convention mismatch. convention.
Type error in argument Compile Argument you passed is an illegal array type
NUMBER to NAME; TYPE is Error or an incomplete type of which the size is
illegal. unknown. Ensure that the argument is of a
complete type.
Type error in argument Compile You passed an argument that is not type
NUMBER to NAME; found Error compatible with the prototype declaration
TYPE expected TYPE. for the parameter in that position. Ensure
that the actual argument is type compatiblle
with the parameter declaration.
Type error: Compile Expression you dereferenced with the *
pointer expected. Error '->"'or]] 'operator does not have pointer
type.
TYPE is an illegal bit Compile Onlyint andunsigned types are valid for
field type. Error bit field declarations; ensure that you use gne
of these types.
TYPE used as an Ivalue. Compile Type that cannot be modified is used as the
Warning target of an assignment. This was probably
caused by an Ivalue that is a dereference|of
an object declared agofd *).
Unclosed comment. Compile Comment is missing the closing
Error */ delimiter.
Undeclared identifier Compile You did not previously declar@AME You
NAME. Error must declare all names before use. Ensure
that you did not conditionally excludeAME
from compilation.

LabWindows/CVI Programmer Reference Manual

A-40

© MNational Instruments Corporation

Appendix A Errors and Warnings

Table A-1. Error Messages (Continued)

Error Message

Type Error

Comment

Undefined label NAME.

Compile
Error

You used the labeVAMEs the target of a

goto statement in the function but it never

appears as a statement label. Ensure the label

appears in the same function asdh®

statements of which it is a target. Non-local

goto statements are illegal.

Undefined size for
TYPE NAME.

Compile
Error

You have defined an object with an

incomplete type. Because the size of an
incomplete type is unknown, storage canr
be allocated for the object.

Undefined size for
field TYPE.

Compile
Error

Member (field) declaration has no size fot
the declared type. You probably declared {
member with an emptstruct or union
type declaration.

Undefinedsizeforfield
TYPE NAME.

Compile
Error

Member (field) declaration has no size fot
the declared type. You probably declared {
member with an emptstruct or union
type declaration.

Undefined size for
parameter TYPE NAME.

Compile
Error

You declared a parameter with an

incomplete type. Because the size of an
incomplete type is unknown, storage canr
be allocated for the object.

Undefined size for
static TYPE NAME.

Compile
Error

You declared atatic object with an
incomplete type or without an initializatior
expression from which the compiler can

ot

he

he

ot

calculate a size for the type. Because the size

of an incomplete type is unknown, you
cannot allocate storage for the object.

Undefined static
TYPE NAME.

Compile
Warning or
Error

You declared thetatic ~ function but never
defined it. Becausesaatic function is
only visible within the file in which you
declared it, you must define it at some po

within the file in order to use it. If you called

the function anywhere in the file, this
diagnostic is an error. Otherwise it is a
warning.

© National Instruments Corporation

A-41

LabWindows/CVI Programmer Reference Manual

Appendix A Errors and Warnings

Table A-1. Error Messages (Continued)

Error Message

Type Error

Comment

Undefined symbol NAME.

Link Error

You used a variable or function in the proje
but did not define it anywhere.

Unexpected #elif;
#endif expected.

Compile
Error

Compiler encountered atelse
preprocessor directive immediately prior t
this#elif ~ at the same level of conditiona
inclusion. Ensure that the conditional
preprocessotinclude directives at this
level are in the proper order.

O

Unexpected #elif;
#if not seen.

Compile
Error

Compiler encountered atelif

preprocessor directive but it has not yet se
a beginningtif |, #ifdef , orifndef at

this level.

en

Unexpected #else;
#endif expected.

Compile
Error

Compiler encountered atelse
preprocessor directive immediately
following a prior#else at the same level o
conditional inclusion. Ensure that the
conditional preprocess@émclude

directives at this level are in the proper ord

Unexpected #else;
#if not seen.

Compile
Error

Compiler encountered atelse
preprocessor directive, but it has not yet se
a beginningtif |, #ifdef , orifndef at

this level.

ren

Unexpected #endif;
no matching #if,
or #ifndef.

#ifdef,

Compile
Error

Compiler encountered atendif
preprocessor directive but has not yet see
beginning#if, #ifdef , orifndef at

this level.

Unexpected EOF.

Load Error

LabWindows/CVI encountered an
unexpected End Of File (EOF) condition
when loading an external object module.
Ensure that the object file has not been
truncated.

Unexpected EOF;
TOKEN expected.

Compile
Error

The compiler encountered an End Of File
(EOF) condition while parsing a syntactic
construct. Ensure that syntactic structure
complete, such as matching parenthesis

is
and

matching braces.

LabWindows/CVI Programmer Reference Manual

A-42

© MNational Instruments Corporation

Appendix A Errors and Warnings

Table A-1. Error Messages (Continued)

struct orunion type you select or
dereference.

Error Message Type Error Comment
Unexpectedendofformat Non-Fatal Format string you passed to the function is
string. Run-time Error | not complete. It is missing a source or

destination format specifier, or contains an
incomplete format specifier.
Unexpected token. Compile Compiler encountered an unexpected token
Error while processing &define preprocessor
directive. Check for missingin your macro
parameter lists.
Unexpected trailing Compile Preprocessor line contains harmless trailing
tokensondirectiveline Warning tokens that the compiler ignored.
ignored.
Uninitialized pointer. Non-Fatal You never assigned a value to the pointer|
Run-time Error | argument you passed to a function.
Uninitialized pointer Fatal Pointer expression you passed to the library
argument to library Run-time Error | function is invalid because you did not
function. initialize it. It is either a local variable or an
object in dynamic memory that you did nat
initialize.
Uninitialized string. Non-Fatal You never assigned a value to the pointer|
Run-time Error | argument you passed to the library functign,
or it isNULL
'union NAME' declared Compile Union declared in the parameter list has
inside parameter list Warning scope only within the parameter list. As a
has scope only for this result, its type is incompatible with all other
declaration. types. You should declare the union type
before you declare function types that use it.
Unknown enumeration Compile NAMEHs an undeclared enumeration type.
NAME. Error
Unknown field NAME Compile Member selection or dereference has
of TYPE. Error attempted to access an undeclared member,
(field) name of astruct , orunion type.
Ensure that the member is declared for the

© National Instruments Corporation

A-43

LabWindows/CVI Programmer Reference Manual

Appendix A Errors and Warnings

Table A-1. Error Messages (Continued)

statement you want to use.

Error Message Type Error Comment
Unknown modifier. Non-Fatal One of the modifiers in a format specifier s
Run-time Error | not valid.
Unknown or unsupported Load Error LabWindows/CVI encountered an unknown
OMF record at position OMF record while loading an external object
NUMBER: OMF record type module. Ensure that the external object
NUMBER. module was compiled properly.
Unknown size of Compile You performed pointer arithmetic on
type TYPE. Error operand(s) that are pointers to types of
unknown size. The types are probably
incomplete types or pointer to function
types. Ensure that the pointer types point|to
fully declared types and are not pointers to
functions.
Unknown specifier. Non-Fatal Specifier in the format specifier is not valigl.
Run-time Error
Unnamed pop matching Compile pack pragma used an unnamed pop that
named push. Warning balances a name push.
Unrecognized character Compile Character escape sequence does not conform
escape sequence. Warning to any known character escape sequence,
octal escape sequence, or hexadecimal
escape sequence.
Unrecognized character Compile Character escape sequence does not conform
escape sequence CHAR. Warning to any known character escape sequence,
octal escape sequence, or hexadecimal
escape sequence.
Unrecognized Compile Declaration is unrecognizable. Check the
declaration. Error declaration syntax for the function, object, pr
type you want to use.
Unrecognized Compile # character begins an unknown preprocessor
preprocessor directive. Error directive. Check the spelling of the
preprocessor directive.
Unrecognized statement. Compile Statement syntax is unrecognizable. Check
Error the statement syntax for the type of

LabWindows/CVI Programmer Reference Manual

A-44

© MNational Instruments Corporation

Appendix A Errors and Warnings

Table A-1. Error Messages (Continued)

© National Instruments Corporation

A-45

LabWindows/CVI Programmer Reference Manual

Error Message Type Error Comment

Unsigned operand of Compile You performed a nonsensical unary negation

unary —. Warning operation on an unsigned type. A negation
operation on an unsigned type is not
effective.

Unsupported segment Load Error LabWindows/CVI encountered a bad

combination type NUMBER: segment while loading an external object

segment name NAME. module. Ensure that the external object
module was compiled properly.

Use of keyword Compile Use of a keyword in a variable definition

' _import' contradicts Error contradicts a previous definition, for

previous use of keyword example:

'__export' at POSITION. int__export x;
int __import x=0;

Use of keyword Compile Use of a keyword in a variable definition

' _export' contradicts Error contradicts a previous definition, for

previous use of keyword example:

' _import' at POSITION. int_import x;
int __export x=0;

Use of keyword Compile Use of a keyword in a variable definition

' __declspec(dllimport)' Error contradicts a previous definition, for

contradicts previous example:

use of keyword int __declspec(dllexport) x;

' __declspec(dllexport)' int __declspec(dllimport) x=0;

at POSITION.

Use of keyword Compile Use of a keyword in a variable definition

' _declspec(dllexport)' Error contradicts a previous definition, for

contradicts previous example:

use of keyword int __declspec(dllimport) x;

' _declspec(dllimport)' int __declspec(dllexport) x=0;

at POSITION.

Value parameter Non-Fatal You passed a pointer for a format specifier

expected. Run-time Error | that requires a scalar value.

Appendix A Errors and Warnings

Table A-1. Error Messages (Continued)

te

multiple of 2 for word
transfer.

Run-time Error

Error Message Type Error Comment
Variables defined as Compile You assigned an initial value to a variable
DLL imports cannot be Error defined as a DLL import, for example:
defined with an initial int_importi=0;
value. You must initialize the variable in a separa
assignment statement.
VXI address must be a Fatal You attempted to perform VXI word transfe

beginning at an odd address.

=

VXI| address must be a
multiple of 4 for
longword transfer.

Fatal
Run-time Error

You attempted to perform a VXI longword
transfer beginning at an address that is ng
multiple of 4.

—
o)}

w modifier not valid
with | format specifier.

Non-Fatal
Run-time Error

You cannot use the modifier with the
I format specifier.

n

rep is present.

Run-time Error

Warning: Import DLL Link When creating a DLL using the Symbols
librariesotherthanthe Warning Marked for Export method for specifying
one for the current exported symbols, one of the modules w4
compatibility mode may an object or library file. LabWindows/CVI
not work for symbols does not have sufficient information to
exported from an object ensure that the import libraries it generatg
file. Itis recommended for all four compatible external compilers
that you export using will have the correct names of the symbols
header files instead. that module.
WatchPoint: module name Watchpoint Module name you specified in the watch
is not valid. Error point is not present in the project or in any
the loaded instrument drivers.
zmodifier onlyvalid if Non-Fatal z modifier cannot be used if the format

specifier is not for an array.

z modifier required to
match string parameter.

Non-Fatal
Run-time Error

If you want to treat a character string as §
array of another type, you must use the
modifier. This error also can occur if the
order of the arguments is incorrect, or if &

argument is missing.

LabWindows/CVI Programmer Reference Manual

A-46

© MNational Instruments Corporation

Customer Communication

For your convenience, this appendix contains forms to help you gather the information necessary
to help us solve your technical problems and a form you can use to comment on the product
documentation. When you contact us, we need the information on the Technical Support Form and
the configuration form, if your manual contains one, about your system configuration to answer your
guestions as quickly as possible.

National Instruments has technical assistance through electronic, fax, and telephone systems to quickly
provide the information you need. Our electronic services include a bulletin board service, an FTP site,
a fax-on-demand system, and e-mail support. If you have a hardware or software problem, first try the
electronic support systems. If the information available on these systems does not answer your
guestions, we offer fax and telephone support through our technical support centers, which are staffed
by applications engineers.

Electronic Services

Bulletin Board Support

National Instruments has BBS and FTP sites dedicated for 24-hour support with a collection of files
and documents to answer most common customer questions. From these sites, you can also downloac
the latest instrument drivers, updates, and example programs. For recorded instructions on how to use
the bulletin board and FTP services and for BBS automated information, call 512 795 6990. You can
access these services at:

United States: 512 794 5422
Up to 14,400 baud, 8 data bits, 1 stop bit, no parity

United Kingdom: 01635 551422
Up to 9,600 baud, 8 data bits, 1 stop bit, no parity

France: 01 48 65 15 59
Up to 9,600 baud, 8 data bits, 1 stop bit, no parity

FTP Support

To access our FTP site, log on to our Internet lipsiatinst.com , asanonymous and use
your Internet address, suchjessmith@anywhere.com , as your password. The support files and
documents are located in tlapport directories.

© National Instruments Corporation B-1 LabWindows/CVI Programmer Reference Manual

Fax-on-Demand Support

Fax-on-Demand is a 24-hour information retrieval system containing a library of documents on a wide
range of technical information. You can access Fax-on-Demand from a touch-tone telephone at
512418 1111.

E-Mail Support (Currently USA Only)

You can submit technical support questions to the applications engineering team through e-mail at the
Internet address listed below. Remember to include your name, address, and phone number so we can
contact you with solutions and suggestions.

support@natinst.com

Telephone and Fax Support

National Instruments has branch offices all over the world. Use the list below to find the technical
support number for your country. If there is no National Instruments office in your country, contact

the source from which you purchased your software to obtain support.

Country Telephone Fax

Australia 03 9879 5166 039879 6277
Austria 0662 4579900 0662 45 79 90 19
Belgium 02 757 00 20 02 757 03 11
Brazil 011 288 3336 011 288 8528
Canada (Ontario) 905 785 0085 905 785 0086
Canada (Quebec) 514 694 8521 514 694 4399
Denmark 4576 26 00 4576 26 02
Finland 09 725725 11 09 725 725 55
France 01481424 24 01481424 14
Germany 089 741 31 30 089 714 60 35
Hong Kong 2645 3186 2686 8505
Israel 03 6120092 03 6120095
Italy 02 413091 02 41309215
Japan 035472 2970 035472 2977
Korea 02 596 7456 02 596 7455
Mexico 5520 2635 5520 3282
Netherlands 0348 433466 0348 430673
Norway 32848400 328486 00
Singapore 2265886 2265887

Spain 91 640 0085 91 640 0533
Sweden 08 7304970 087304370
Switzerland 056 200 51 51 056 200 51 55
Taiwan 02 377 1200 02 737 4644

United Kingdom
United States

01635 523545
512 795 8248

LabWindows/CVI Programmer Reference Manual B-2

01635 523154
512 794 5678

© MNational Instruments Corporation

Technical Support Form

Photocopy this form and update it each time you make changes to your software or hardware, and use
the completed copy of this form as a reference for your current configuration. Completing this form
accurately before contacting National Instruments for technical support helps our applications
engineers answer your questions more efficiently.

If you are using any National Instruments hardware or software products related to this problem,
include the configuration forms from their user manuals. Include additional pages if necessary.

Name

Company

Address

Fax(___) Phone (__)

Computer brand Model Processor
Operating system (include version number)

Clock speed MHz RAM__ MB Display adapter

Mouse ___yes __ no Other adapters installed

Hard disk capacity _ MB Brand

Instruments used

National Instruments hardware product model Revision
Configuration

National Instruments software product Version
Configuration

The problem is:

List any error messages:

The following steps reproduce the problem:

LabWindows/CVI Hardware and Software
Configuration Form

Record the settings and revisions of your hardware and software on the line to the right of each item.
Complete a new copy of this form each time you revise your software or hardware configuration, and
use this form as a reference for your current configuration. Completing this form accurately before
contacting National Instruments for technical support helps our applications engineers answer your
guestions more efficiently.

National Instruments Products

Hardware revision

Interrupt level of hardware

DMA channels of hardware

Base I/O address of hardware

Programming choice

National Instruments software

Other boards in system

Base I/O address of other boards

DMA channels of other boards

Interrupt level of other boards

Other Products

Computer make and model

Microprocessor

Clock frequency or speed

Type of video board installed

Operating system version

Operating system mode

Programming language

Programming language version

Other boards in system

Base I/0O address of other boards

DMA channels of other boards

Interrupt level of other boards

Documentation Comment Form

National Instruments encourages you to comment on the documentation supplied with our products.
This information helps us provide quality products to meet your needs.

Title: LabWindows/CVI Programmer Reference Manual
Edition Date: February 1998
Part Number: 320685D-01

Please comment on the completeness, clarity, and organization of the manual.

If you find errors in the manual, please record the page numbers and describe the errors.

Thank you for your help.
Name

Title
Company
Address

E-Mail Address

Phone (_) Fax (___)

Mail to: Technical Publications Faxto: Technical Publications
National Instruments Corporation National Instruments Corporation
6504 Bridge Point Parkway 512 794 5678

Austin, Texas 78730-5039

Glossary

Prefix Meaning Value
m- milli- 107
- micro- 10°
n- nano- 10°

active window
API
Array Display

auto-exclusion

binary control

breakpoint
Breakpoint

Breakpoint command

© National Instruments Corporation

The window user input affects at a given moment. The title of an
active window is highlighted.

Application Programming Interface. A set of functions exported by
a library.

A mechanism for viewing and editing numeric arrays.

A mechanism that prevents pre-existing lines from executing in the
Interactive Execution window.

A function panel control that resembles a physical on/off switch
and can produce one of two values depending upon the position of
the switch.

An interruption in the execution of a program.
A function that interrupts the execution of a program.

A specific command that interrupts the execution of a program.

G-1 LabWindows/CVI Programmer Reference Manual

Glossary

cdecl

check box

clipboard

control

cursor

cursor location indicator

D

default command

dialog box

DLL

E

entry mode indicator

excluded code

LabWindows/CVI Programmer Reference Manual G-2

A function calling convention in which function calls pass arguments
from right to left, and the caller restores the stack position after
the call.

A dialog box item that allows you to toggle between two possible
options.

A temporary storage area LabWindows/CVI uses to hold text that is
cut, copied, or deleted from a work area.

An input and output device that appears on a function panel for
specifying function parameters and displaying function results.

The flashing rectangle that shows where you can enter text on the
screen.

An element of the LabWindows/CVI screen that specifies the row
and column position of the cursor in the window.

The action that takes place when you press <Enter> and did not
specifically select a command. A double outline indicates default
command buttons in dialog boxes.

A prompt mechanism in which you specify additional information
necessary to complete a command.

Dynamic Link Library. A file that contains a collection of functions
that multiple applicationsdxe files) can use.

An element of the LabWindows/CVI screen that indicates the current
text entry mode as either insert or overwrite.

Code that LabWindows/CVI ignores during compilation and
execution. LabWindows/CVI displays excluded lines of code in a
different color than included lines of code.

© MNational Instruments Corporation

F

fp file

function panel

Glossary

A file that contains information about the function tree and function
panels of an instrument module.

A screen-oriented user interface to the LabWindows/CVI libraries in
which you can interactively execute library functions and generate
code for inclusion in a program.

Function Panel Editor window The window in which you build a function panel. The

function panel window

function tree

Function Tree Editor window

G

Generated Code box

global control

glue code

H

hex

© National Instruments Corporation

LabWindows/CVI Instrument Driver Developers Guide
The window in which you can use function panels.

The hierarchical structure in which the functions in a library or an
instrument driver are grouped. The function tree simplifies access to
a library or instrument driver by presenting functions organized
according to the operation they perform, as opposed to a single linear
listing of all available functions.

The window in which you build the skeleton of a function panel file.
It is described in theabWindows/CVI Instrument Driver
Developers Guide

A small box located at the bottom of the function panel screen that
displays the function call code that corresponds to the current state
of the function panel controls.

A function panel control that displays the contents of global variables
in a library function. Global controls allow you to monitor global
variables in a function that the function does not specifically return
as results by the function. These are read-only controls that cannot be
altered by the user, and do not contribute a parameter to the generated
code.

Special code that provides the interface between 32-bit
LabWindows/CVI applications and 16-bit DLLs.

Hexadecimal.

G-3 LabWindows/CVI Programmer Reference Manual

Glossary

highlight The way in which input focus is displayed on a LabWindows/CVI
screen; to move the input focus onto an item.

immediate action command A menu bar item that has no menu items associated with it and causes
a command to execute immediately when you select it. An
immediate action command is suffixed with an exclamation point (!).

input control A function panel control that accepts a value you type in from the
keyboard. An input control can have a default value associated with
it. This value appears in the control when the panel is first displayed.

input focus Displayed on the screen as a highlight on an item, signifying that the
item is active. User input affects the item in the dialog box that has
the input focus.

instrument driver A set of high-level functions for controlling an instrument. It
encapsulates many low-level operations, such as data formatting and
GPIB, RS-232, and VXI communication, into intuitive, high-level
functions. An instrument driver can pertain to one particular
instrument or to a group of related instruments. An instrument driver
consists of a program and a set of function panels. The program
contains the code for the high-level functions. Associated with the
instrument program is an include file that declares the high-level
functions you can call, the global variables you can access, and the
defined constants you can use.

Interactive Execution window A LabWindows/CVI work area in which you can execute sections of
code without creating an entire program.

LabWindows/CVI Programmer Reference Manual G4 © National Instruments Corporation

L

list box

Ivalue

MB

menu

0

output control

ordinal number

P

PASCAL

Project window

prompt command

© National Instruments Corporation

Glossary

A dialog box item that displays a list of possible choices.

A C expression that refers to an object that can be examined and
modified. The name Ivalue comes from the fact that only Ilvalues may
appear on the left side of an assignment. Examples of Ivalues are
variables, parameters, array element references suagih as

struct element references suchsasname ors.name , and

pointer dereferences such*as . Expressions that are not lvalues
are called rvalues.

Megabytes of memory.

An area accessible from the command bar that displays a subset of
the possible command choices.

A function panel control that displays a value that the function you
execute generates. An output control parameter must be a string, an
array, or a reference parameter of type integer, long, single-precision,
or double-precision.

A numeric value that corresponds to a function within a DLL. The
linker that creates the DLL arbitrarily defines it, or it may be
specified in thedef file when the DLL is created.

A Windows 3.1 function calling convention in which function
arguments are passed left to right, and the function restores the stack
pointer before it returns.

A window that contains a list of files your application uses.

A command that requires additional information before it can be
executed; a prompt command appears on a pull-down menu suffixed
with an ellipsis (. . .).

G-5 LabWindows/CVI Programmer Reference Manual

Glossary

R

return value control

ring control

rvalue

SDK

scroll bars

scrollable text box

select

shortcut key command

slide control

slider

Source window

A function panel control that displays a value returned from a
function as a return value rather than as a formal parameter.

A function panel control that represents a range of values much like
the slide control, but displays only a single item in a list, rather than
displaying the whole list at once as the slide control does. Each item
has a different value associated with it. This value is placed in the
function call.

Any C expression that is not an lvalue. Examples of rvalues are array
names, functions, function calls such(as, assignment expressions
such ax=e and cast expressions such/&as/Type)e

Windows Software Development Kit. An API in the Windows
operating system.

Areas along the bottom and right sides of a window that show your
relative position in the file. You can use scroll bars can be used to
move about in the window.

A dialog box item that displays text in a scrollable display.

To choose the item that the next executed action affects by moving
the input focus (highlight) to a particular item or area.

A combination of keystrokes that provide a means of executing a
command without accessing a menu in the command bar.

A function panel control that resembles a physical slide switch. A
slide control is a means for selecting one item from a list of options;
it inserts a value in a function call that depends upon the position of
the cross-bar on the switch.

The cross-bar on the slide control that determines the value placed in
the function call.

A LabWindows/CVI work area where you edit and execute
programs.

LabWindows/CVI Programmer Reference Manual G-6 © National Instruments Corporation

Standard Input/Output
window

standard libraries

stdcall

String Display window

T

text box

U

User Interface Editor window

v

Variables window

© National Instruments Corporation

Glossary

A LabWindows/CVI work area in which textual output to and input
from the user take place.

The LabWindows/CVI User Interface, Analysis, Data Formatting
and 1/0O, GPIB, GPIB-488.2, DDE, TCP, RS-232, Utility, and
C system libraries.

A Windows 95/NT calling convention in which function calls pass
arguments from right to left, and the function restores the stack
pointer before it returns.

A window for viewing and editing string variables and arrays.

A dialog box item in which you enter text from the keyboard or
view text.

The window in which you build pull-down menus, dialog boxes,
panels, and controls and save them to a User Interface Resource
(.uir) file. TheLabWindows/CVI User Interface Reference Manual
describes it.

A window that shows the values of the variables that are currently
active.

G-7 LabWindows/CVI Programmer Reference Manual

Glossary

U}

Watch window A window that shows the values of selected variables and
expressions that are currently active.

window A working area that supports specific tasks related to developing and

executing programs.

LabWindows/CVI Programmer Reference Manual G-8 © National Instruments Corporation

Index

Special Characters/Numbers

#line preprocessor directive, 1-2
_cdecl calling convention qualifier, 1-2
__cdecl calling convention qualifier, 1-2
__declspec(dllexport) qualifier, 1-3, 3-22
__declspec(dllimport) qualifier, 1-3
_export qualifier, 1-3
__export qualifier, 1-3, 3-22
_import qualifier, 1-3
__import qualifier, 1-3
_NI_mswin_ macro, 6-1
_NI_mswinl6_ macro, 6-1
_NI_mswin32_ macro, 6-1
_NI_sparc_ macro, 6-1
_NI_unix_ macro, 6-1
_stdcall calling convention qualifier, 1-2
__stdcall calling convention qualifier
creating static libraries (note), 3-25
creating static objects (note), 3-26
declaring functions for export, 3-21 to 3-22
purpose and use, 1-3
16-bit source code, converting to 32-bit source
code, 1-6to 1-7
16-bit Windows DLLsSeeWindows
16-bit DLLs.
32-bit Borland or Symantec compiled modules
under Windows, 4-2 to 4-3
32-bit source code
converting 16-bit source code to 32-bit
source code, 1-6 to 1-7

DLL calling directly back into 32-bit code,
4-12 to 4-15
32-bit Watcom compiled modules under
Windows 3.1, 4-1 to 4-2
32-bit Windows DLLsSeeWindows
32-bit DLLs.

© National Instruments Corporation

I-1

A

.afiles, using with standalone executables, 7-9
ActiveX Automation Library, 9-6
Add Files to DLL button, 7-15
Add Files to Executable button, 7-15
Advanced Analysis Library, 9-3
Analysis Library, 9-3
ANSI C Library
include files, for Windows 95/NT, 3-10
status reporting by, 9-7
Sun Solaris libraries
incompatibilities with
LabWindows/CVI, 5-10 to 5-11
non-ANSI behavior, 5-4
Solaris 1 implementation, 5-8 to 5-9
static and shared versions, 5-3
ANSI C specifications
multiplatform application portability, 6-2
non-ANSI LabWindows/CVI compiler
keywords, 1-2
using low-level I/O functions, 1-5
array indexing errorsSeepointer protection
errors.
array passing in glue code, 4-9to 4-11
asynchronous callbacks, compiled modules
using, 2-7
asynchronous DLL functions, 4-11 to 4-12
asynchronous signal handling, UNIX, 5-7 to 5-8

LabWindows/CVI Programmer Reference Manual

Index

bit fields, Windows 32-bit DLLs, 3-6
Borland C/C++

Borland or Symantec 32-bit compiled
modules under Windows, 4-2 to 4-3
Builder not supported by
LabWindows/CVI object or static
library files, 3-17
creating 16-bit Windows DLLs, 4-22
creating object and library files, 3-18
default library directives, 3-16
staticversusdynamic C libraries, 3-17
turning off incremental linker, 3-17
Break on Library Errors option, 1-12,
7-19,9-1
buffer retention by DLL glue code,
4-11to 4-12
Build menu
Create Distribution Kit command,
7-1,7-9
External Compiler Support command,
3-11, 3-13
Target command, 3-20, 3-21, 3-25
building platform-independent applications.
Seemultiplatform applications, building.
bulletin board support, B-1

C

.c files.Seesource files.
C language extensions
calling conventions (Windows 95/NT),
1-2t0 1-3
C++-style comment markers, 1-4
duplicate typedefs, 1-4
import and export qualifiers, 1-3 to 1-4
non-ANSI C standard keywords, 1-2
program entry points (Windows), 1-5
structure packing pragma (Windows),
1-4t01-5

LabWindows/CVI Programmer Reference Manual -2

C library issues, 1-5
C++ style comment markers, 1-4
callback functions
compiled modules using asynchronous
callbacks, 2-7
direct callback by DLLs, 4-12 to 4-15
notification of run state changes in
compiled modules, 2-4 to 2-5
using in DLLs, 2-6 to 2-7
callback references, resolving
(Windows 95/NT)
from modules loaded at run-time, 3-12
references to non-LabWindows/CVI
symbols, 3-12 to 3-13
run-time module
references to symbols not exported
from DLL, 3-13
from .uir files, 3-10 to 3-12
linking to callback functions not
exported from DLL, 3-11 to 3-12
calling conventions (Windows 95/NT)
for exported functions, 3-21 to 3-22
using qualifiers, 1-2 to 1-3
casting.Seepointer casting.
cdecl calling convention, 1-2

_cdecl calling convention qualifier, 1-2
__cdecl calling convention qualifier, 1-3

Check Disk Dates Before Each Run
option, 4-4
CloseCVIRTE function, 3-14 to 3-15
code.Seesource files.
colors, multiplatform application
considerations, 6-3
comment markers, C++ style, 1-4
compiled modulesSeeloadable compiled
modules.
compiler.See alsa@ompiler options.
C library issues, 1-5
using low-level I/O functions, 1-5
compiler defines, 1-2
compiler limits (table), 1-1

© MNational Instruments Corporation

data types
allowable data types (table), 1-6
converting 16-bit code to 32-bit
code, 1-6 to 1-7
debugging levels, 1-8
error messages, A-1 to A-46
limits (table), 1-1
non-ANSI C keywords, 1-2
overview, 1-1
user protection errors
general protection errors, 1-11
library protection errors, 1-11 to 1-12
memory corruption (fatal), 1-11
memory deallocation
(non-fatal), 1-11
pointer arithmetic (non-fatal),
1-8t01-9
pointer assignment (non-fatal), 1-9
pointer casting (non-fatal), 1-10
pointer comparison (hon-fatal), 1-10
pointer dereference errors (fatal),
1-9to 1-10
pointer subtraction (nhon-fatal), 1-10
Compiler Defines command, Options menu,
1-2, 3-27
compiler options
compiled object modules
Borland C 4.x, 4-3
Symantec C++ 6.0, 4-3
Watcom, 4-2
setting, 1-2
Compiler Options command, Options
menu, 1-2
compiler/linker issuesSeespecific operating
system, e.g., UNIX operating system.
configuring Run-time EngineseeRun-time
Engine, configuring.
converting 16-bit source code to 32-bit source
code, 1-6to 1-7
Create Distribution Kit command, Build
menu, 7-1, 7-9

© National Instruments Corporation -3

Index

Create Dynamic Link Library command,
3-24,7-18
Create Object File command, Options
menu, 3-26
Create Standalone Executable File command,
3-20, 7-16
Create Static Library command, 3-21, 3-26
creating
loadable compiled moduleSeeloadable
compiled modules.
platform-independent applicatiorsee
multiplatform applications, building.
standalone executabledeestandalone
executables, creating and distributing.
Windows DLLs.SeeWindows 16-bit
DLLs; Windows 32-bit DLLs.
customer communicatioryi, B-1 to B-2
cvidir configuration option
(Windows 95/NT), 7-7
CVIRTEHasBeenDetached function, 3-3
cvirtx configuration option (Windows 3.1), 7-6

D

Data Acquisition Library, 9-4
data types
allowable data types for compiler
(table), 1-6
converting 16-bit source code to 32-bit
source code, 1-6to 1-7
DDE Library, 9-6
debugging levels
Extended, 1-8
setting, 1-8
Standard, 1-8

__declspec(dllexport) qualifier, 1-3, 3-22
__declspec(dllimport) qualifier, 1-3

distributing libraries, 8-1 to 8-3
adding to user’s Library menu, 8-1 to 8-2
specifying library dependencies,
8-210 8-3

LabWindows/CVI Programmer Reference Manual

Index

distributing standalone executabl8ge
standalone executables, creating and
distributing.
DLLEXPORT macro, 1-4, 3-22 to 3-23
DLLIMPORT macro, 1-4
DlIMain function, in DLLs, 3-3
DLLs. SeeWindows 16-bit DLLs; Windows
32-bit DLLs.
DLLSTDCALL macro, 3-22, 3-24
dlopen function, Sun Solaris, 5-2
documentation
conventions used in manualy-xv
organization of manuakiii-xiv
related documentatiory
doubles, returning, 3-7
DSTRules option, 7-7
duplicate typedefs, 1-4
dynamic memory protection, 1-15
dynamic memory protection errors
memory corruption (fatal), 1-11
memory deallocation (hon-fatal), 1-11

E

Easy I/O for DAQ Library, 9-4
Edit menu
Function Tree Editor, 8-2
Source, Interactive Execution, and
Standard Input/Output windows, 3-3
electronic support services, B-1 to B-2
e-mail support, B-2
enum sizes, Windows 32-bit DLLs, 3-7
error checking, 9-1 to 9-7
Break on Library Errors option, 1-12,
7-19, 9-1
overview, 9-1
standalone executables, 7-19

LabWindows/CVI Programmer Reference Manual -4

status codes
checking function call status
codes, 9-1
returned by LabWindows/CVI
functions, 9-2 to 9-3
status reporting by libraries and
instrument drivers, 9-3 to 9-7
errors.See alsaser protection errors.
compiler-related error messages,
A-1to A-46
events, multiplatform application
considerations, 6-3
executable file, required for standalone
executables, 7-8
executables, creating and distributiGge
standalone executables, creating and
distributing.
export qualifiers
_export, 1-3
__export, 1-3, 3-22
exporting DLL functions and
variables, 3-22
purpose and use, 1-3to 1-4
External Compiler Support command, Build
menu, 3-11, 3-13
external modulesSee alsdoadable compiled
modules.
definition, 2-4
forcing referenced modules into
executable or DLL, 7-15
multiplatform application
considerations, 6-3
under UNIX
compiling with external compilers,
5-6 to 5-7
restrictions, 5-6
using loadable compiled module as, 2-4

© MNational Instruments Corporation

F

fax and telephone support numbers, B-2
Fax-on-Demand support, B-1
files for running standalone executables
accessing UIR, image, and panel state
files, 7-12
DLL files
Windows 3.1, 7-13 to 7-14
Windows 95/NT, 7-13
loading files using LoadExternalModule,
7-14to 7-18
DLL files and DLL path files
(Windows 3.1), 7-17 to 7-18
DLL files (Windows 95/NT), 7-17
files in project, 7-151to 7-16
forcing referenced modules into
executable or DLL, 7-15
library files not in project, 7-16
object files not in project, 7-16
other types of files, 7-19
source files, 7-18
location of files on target machine,
7-9to 7-19
relative pathnames for accessing
files, 7-19
required files, 7-8 to 7-9
floats, returning, 3-7
fonts
multiplatform application
considerations, 6-3
Windows 95/NT files for standalone
executables, 7-11
Formatting and 1/O Library, 9-6 to 9-7
forward <delete> key, multiplatform
application considerations, 6-3
.FP Auto-Load List command, Edit menu, 8-2
FTP support, B-1
functions exported by ordinal value only, 4-20

© National Instruments Corporation I-5

Index

G

general protection errors, 1-11

Generate DLL Glue Code command, Options
menu, 4-8, 4-9

Generate DLL Glue Object command,
Options menu, 7-17

Generate DLL Import Library command,
Options menu, 3-4, 3-5

Generate DLL Import Source command,
Options menu, 3-21

Generate Windows Help command, Options
menu, 3-25

GetCVIWindowHandle function, 4-21

glue codeSeeWindows 16-bit DLLs.

GNU C Compiler, 5-3

GPIB/GPIB 488.2 Library, 9-4 to 9-5

graphical user interface (GUI), multiplatform
application considerations, 6-3

H

hardware interrupts under
Windows 95/NT, 3-29

hot keys, multiplatform application
considerations, 6-3

I
image files
accessing from standalone
executables, 7-12
multiplatform application
considerations, 6-3
using with standalone executables, 7-9
import libraries (Windows 95/NT)
automatic loading of SDK import
libraries, 3-27 to 3-28
compatibility with external compilers, 3-5

customizing DLL import libraries,
3-20to 3-21

LabWindows/CVI Programmer Reference Manual

Index

generating DLL import library, 3-4
link errors when using DLL import
libraries, 3-2
import qualifiers
_import, 1-3
__import, 1-3
marking imported symbols in include file,
3-23t0 3-24
purpose and use, 1-2 to 1-3
include files
ANSI C library and LabWindows/CVI
libraries, 3-10
generating glue code, 4-9
Windows 32-bit DLLs
exporting DLL functions and
variables, 3-22
marking imported symbols in include
file, 3-23 to 3-24
Windows SDK functions, 3-26 to 3-27
include paths, setting up for
LabWindows/CVI, ANSI C, and SDK
libraries, 3-28 to 3-29
Include Paths command, Options menu,
1-17, 3-28
InitCVIRTE, calling
UNIX executables, 5-4 to 5-5
Windows 95/NT executables,
3-14to 3-15
Insert Constructs command, Edit menu, 3-3
Instrument Directories command, Options
menu, 8-2
instrument drivers
definition, 2-2
status reporting, 9-7
using loadable compiled modules as
program files, 2-2
Instrument menu, 2-3, 7-15
interrupts under Windows 95/NT, 3-29
IVI Library, 9-5

LabWindows/CVI Programmer Reference Manual -6

K

keywords, non-ANSI LabWindows/CVI, 1-2

L

LabWindows/CVI compilerSeecompiler.
LabWindows/CVI Run-time Engin&ee
Run-time Engine.
lib files. Sedlibrary files.
libraries
C library issues, 1-5
creating static libraries, 3-25
distributing, 8-1 to 8-3
adding to user’s Library menu,
8-1t0 8-2
specifying library dependencies,
8-21t0 8-3
loading library files for standalone
executables, 7-16
portability issues for multiplatform
applications, 6-1 to 6-2
using loadable compiled modules as user
libraries, 2-3
Windows 95/NT compiler issues
calling InitCVIRTE and
CloseCVIRTE, 3-14 to 3-15
include files for ANSI C library and
LabWindows/CVI libraries, 3-10
multithreading and
LabWindows/CVI libraries, 3-8
resolving callback references from
.uir files, 3-10to 3-12
resolving references from modules
loaded at run-time, 3-12
standard input/output windows, 3-10
using LabWindows/CVI libraries in
external compilers, 3-9 to 3-15

© MNational Instruments Corporation

library files
compatibility with external compilers
(Windows 95/NT), 3-5
creating in external compilers for use in
LabWindows/CVI, 3-18 to 3-19
loading with LoadExternalModule, 7-16
using with standalone executables, 7-9
library function user protection errors, 1-16
disabling, 1-13to 1-14
Library menu
appearance of user libraries on, 2-3
installing user libraries, 2-3, 8-1 to 8-2
linking modules with external
modules, 7-15
Library Options command, Project Options
menu, 2-3, 8-1
library protection errors, 1-11 to 1-12
disabling
for functions, 1-13 to 1-14
at run-time, 1-12
errors involving library protection,
1-11to0 1-12
loadable compiled modules
16-bit Windows DLLs
creating
with Borland C++, 4-22
with Microsoft Visual C++ 1.5,
4-21 to 4-22
glue code
DLLs unable to use glue code
generated at load time,
4-8 to 4-20
DLLs using glue code generated
at load time, 4-8
requirements, 4-7
helpful LabWindows/CVI
options, 4-4
overview, 4-3 to 4-4
rules and restrictions, 4-5to 4-7
search precedence, 4-23 to 4-24

© National Instruments Corporation

Index

32-bit Borland or Symantec compiled
modules under Windows, 4-2 to 4-3
32-bit Watcom compiled modules under
Windows 3.1, 4-1 to 4-2
advantages and disadvantages, 2-2
external modules, 2-4
instrument driver program files,
2-2t0 2-3
modules compiled by
LabWindows/CVI, 4-1
multiplatform application
considerations, 6-3
notification of run state changes,
2-4t0 2-6
examples of program state changes,
2-5to0 2-6
modules using asynchronous
callbacks, 2-4
overview, 2-1
project list, 2-3 to 2-4
requirements, 2-1
UNIX compiler/linker issues, 5-6 to 5-7
compiling, 5-6 to 5-7
restrictions, 5-6
user libraries, 2-3
Windows messages passed from
DLLs, 4-21
GetCVIWindowHandle
function, 4-21
RegisterwinMsgCallback
function, 4-21
UnRegisterwinMsgCallback
function, 4-21
LoadExternalModule rules, 7-14 to 7-18
DLL files and DLL path files
(Windows 3.1), 7-17 to 7-18
DLL files (Windows 95/NT), 3-2, 7-17
files listed in project, 7-15to 7-16
forcing modules into executable or
DLL, 7-15
library files not in project, 7-16
object files not in project, 7-16

LabWindows/CVI Programmer Reference Manual

Index

other types of files, 7-19
source files, 7-18
locking process segments into memory using
plock(), 5-7
long doubles, Windows 32-bit DLLs, 3-7
low-level 1/O functions, using, 1-5
low-level support driver, used by Run-time
Engine, 7-10to 7-11

macros, predefined, 6-1
manual.Seedocumentation.
math coprocessor software emulation for
Windows 3.1, 7-2
memory protection errors
memory corruption (fatal), 1-11
memory deallocation (hon-fatal), 1-11
message file for Run-time Engine
translating, 7-5
Windows 95/NT, 7-11
messages passed from DLISeeWindows
messages passed from DLLs.
Microsoft Visual Basic, automatic inclusion of
Type Library resource for, 3-24 to 3-25
Microsoft Visual C/C++
creating 16-bit Windows DLLs,
4-21to0 4-22
creating object and library files, 3-18
default library directives, 3-16
minimum system requirements for standalone
executables, 7-1to 7-2
missing return value (non-fatal) error, 1-11
modini program (caution), 8-2, 8-3
modreg program (caution), 8-2, 8-3
multiplatform applications, building
externally compiled module issues, 6-3
library portability issues, 6-1 to 6-2
predefined macros, 6-1
programming guidelines, 6-1 to 6-3
user interface guidelines, 6-3

LabWindows/CVI Programmer Reference Manual -8

multithreading
creating multiple threads with Windows
SDK functions, 3-27
using LabWindows/CVI libraries, 3-8

_NI_mswin_ macro, 6-1
_NI_mswinl6_macro, 6-1
_NI_mswin32_ macro

multiplatform programming, 6-1
required for external compilers, 3-8

_NI_sparc_ macro, 6-1
_NI_unix_ macro, 6-1

0

.0 files
loading with LoadExternalModule, 7-14
using with standalone executables, 7-9
object files
compatibility with external compilers
(Windows 95/NT), 3-5
creating
in external compilers for use in
LabWindows/CVI, 3-18 to 3-19
in LabWindows/CVI, 3-26
loading with LoadExternalModule, 7-14
using with standalone executables, 7-9
Options menu
Function Tree Editor, Generate Windows
Help command, 3-25
Project window
Compiler Defines command,
1-2,3-27
Compiler Options command, 1-2
Include Paths command, 1-17, 3-28
Instrument Directories
command, 8-2
Run Options command, 1-8,
1-12,1-16

© MNational Instruments Corporation

Source, Interactive Execution, and
Standard Input/Output windows
Create Object File command, 3-26
Generate DLL Glue Code command,
4-8, 4-9
Generate DLL Glue Object
command, 7-17
Generate DLL Import Library
command, 3-4, 3-5
Generate DLL Import Source
command, 3-21
ordinal value for exporting functions, 4-20

P

pack pragma (Windows), 1-4 to 1-5, 3-6
panel state files
accessing from standalone
executables, 7-12
required for standalone executables, 7-9
pascal, Pascal, and _pascal keywords, 1-2
Pascal DLL functions, 4-8, 4-9
path files.See.pth files.
PCX files, multiplatform application
considerations, 6-3
platform-independent applications, building.
Seemultiplatform applications, building.
plock function, UNIX, 5-7
pointer casting, 1-14
pointer protection errors, 1-8 to 1-10
disabling for individual pointers,
1-12to 1-13
dynamic memory protection errors, 1-11
pointer arithmetic (non-fatal), 1-8 to 1-9
pointer assignment (non-fatal), 1-9
pointer casting (non-fatal), 1-10
pointer comparison (non-fatal), 1-10
pointer dereference errors (fatal),
1-9to 1-10
pointer subtraction (non-fatal), 1-10

© National Instruments Corporation -9

Index

pointers
DLLs passing pointers that point to other
pointers, 4-18 to 4-20
returned by DLLs, 4-15 to 4-17
pragmas
disabling or enabling library protection
errors, 1-13to 1-14
structure packing (Windows),
1-4to 1-5, 3-6
predefined macros, 6-1
printf function
LabWindows/CVI implementation, 5-4
using with external compiler, 3-10
process segments, locking into memory using
plock(), 5-7
program entry points (Windows), 1-5
Project window, Run Options menu, 4-4
projects.See alssource files.
loadable compiled modules in project list,
2-3to 2-4
loading project files with
LoadExternalModule, 7-15 to 7-16
.pth files
loading with LoadExternalModule,
7-17 to 7-18

not supported for Windows 95/NT, 3-2
using with standalone executables, 7-9

Q

Q387 coprocessor emulation software
(Quickware), 7-2

R

references, resolvinGeecallback references,
resolving (Windows 95/NT).

RegisterWinMsgCallback function, 4-21

Reload DLLs Before Each Run option, 4-4

resolving reference&eecallback references,
resolving.

LabWindows/CVI Programmer Reference Manual

Index

resource files (Windows 95/NT), for
standalone executables, 7-11
return values, missing (non-fatal) error, 1-11
RS-232 Library, 9-5
Run Options command, Options menu
Break on library errors option, 1-12, 7-19
setting debugging levels, 1-8
setting maximum stack size, 1-16
Run Options menu, Project window, 4-4
run state change notification for compiled
modules
asynchronous callbacks, 2-4
examples of program state changes,
2-5t0 2-6
including in DLLs, 3-2 to 3-3
prototype for callback, 2-4
requirements, 2-4
unavailable
for executables under UNIX, 5-5

for external compilers under
Windows 95/NT, 3-13 to 3-14
Run-time EngineSee alsstandalone
executables, creating and distributing.
configuring, 7-5to 7-7
cvidir option, 7-7
cvirtx option, 7-6
DSTRules, 7-7
option descriptions, 7-6
setting configuration options, 7-6
Solaris 1 patches required, 7-5to 7-6
UNIX options, 7-7
useDefaultTimer, 7-7
files required for running executable
programs, 7-8 to 7-9
location and type of files, 7-9 to 7-11
Windows 3.1, 7-11 to 7-12
Windows 95/NT, 7-10to 7-11
overview, 7-1
shared library capability, 5-2

LabWindows/CVI Programmer Reference Manual 1-10

system requirements
Windows 3.1, 7-2
Windows 95/NT, 7-1to 7-2

translating message file, 7-5

S

scanf function
LabWindows/CVI implementation, 5-4
using with external compiler, 3-10
SDK functions.SeeWindows SDK functions.

search precedence of Windows DLLs,
4-23 10 4-24
shared libraries, under UNIX, 5-2
shortcut keys, multiplatform application
considerations, 6-3

SIGBUS signal, 5-7
SIGFPE signal, 5-7
SIGILL signal, 5-7
SIGINT signal, 5-7
SIGPIPE signal, 5-7
SIGPOLL (SIGIO) signal, 5-7
SIGQUIT signal, 5-7
SIGSEGYV signal, 5-7
SIGTERM signal, 5-7
Solaris.SeeSun Solaris.
source files

converting 16-bit source code to 32-bit

source code, 1-6to 1-7
loading with LoadExternalModule, 7-18
preparing for use in Windows 32-bit DLL,
3-21t0 3-24
calling conventions for exported
functions, 3-21 to 3-22
exporting DLL functions and
variables, 3-22
export qualifier method,
3-22 t0 3-23
include file method, 3-22

© MNational Instruments Corporation

marking imported symbols in include
file distributed with DLL,
3-23t0 3-24
recommendations, 3-24
stack overflow error (fatal), 1-11
stack size, 1-16 to 1-17
standalone executables, creating and
distributing
accessing UIR, image, and panel state
files, 7-12
configuring Run-time Engine, 7-5to 7-7
distributing
Solaris 1, 7-4to 7-5
Solaris 2, 7-3t0 7-4
UNIX, 7-2t0 7-5
Windows 3.1, 7-2
Windows 95/NT, 7-1to 7-2
error checking, 7-19
loading files using LoadExternalModule,
7-14t0 7-18
DLL files and DLL path files
(Windows 3.1), 7-17 to 7-18
DLL files for Windows 95/NT, 7-17
library files, 7-16
object modules, 7-16
source files, 7-18
location of files on target machine,
7-9to 7-19
DLL files
Windows 3.1, 7-10 to 7-11
Windows 95/NT, 7-10
loading files using
LoadExternalModule,
7-14to 7-18
Run-time Engine under
Windows 95/NT, 7-10 to 7-11
UIR, image, and panel state
files, 7-12

© National Instruments Corporation

Index

math coprocessor software emulation for
Windows 3.1, 7-2
relative pathnames for accessing
files, 7-19
translating message file, 7-5
UNIX compiler/linker issues, 5-3 to 5-5
compatible compilers, 5-3
INitCVIRTE called by main function,
5-4to 5-5
non-ANSI behavior of Sun Solaris 1
ANSI C library, 5-4
printf and scanf under
LabWindows/CVI, 5-4
run state change callbacks not
available, 5-5
static and shared versions of ANSI C
and other Sun libraries, 5-3 to 5-4
Windows 3.1 system requirements,
7-1t0 7-2
Windows 95/NT, 3-20
necessary files, 7-9
system requirements, 7-1 to 7-2
standard input/output windows,
LabWindows/CVI, 3-10
state change notification for compiled
modulesSeerun state change notification
for compiled modules.
state filesSeepanel state files.
static libraries, creating, 3-25
status codes
checking function call status codes, 9-1
definition (note), 9-2
returned by LabWindows/CVI functions,
9-2t09-3
status reporting by libraries and instrument
drivers, 9-3to 9-7
ActiveX Automation Library, 9-6
Advanced Analysis Library, 9-3
Analysis Library, 9-3
ANSI C Library, 9-7
Data Acquisition Library, 9-4

LabWindows/CVI Programmer Reference Manual

Index

DDE Library, 9-6

Easy I/O for DAQ Library, 9-4

Formatting and I/O Library, 9-6 to 9-7

GPIB/GPIB 488.2 Library, 9-4 to 9-5

IVI Library, 9-5

LabWindows/CVI instrument drivers, 9-7

RS-232 Library, 9-5

TCP Library, 9-6

User Interface Library, 9-3

Utility Library, 9-7

VISA Library, 9-5

VXI Library, 9-4

X Property Library, 9-6

_stdcall calling convention qualifier, 1-2
__stdcall calling convention qualifier

creating static libraries (note), 3-25

creating static objects (note), 3-26

declaring functions for export,

3-21to 3-22
purpose and use, 1-3
structure packing pragmas (Windows),
1-4to 1-5, 3-6
Sun C Compiler, 5-3
Sun C librarySee alsaJNIX compiler/linker
issues.

ANSI C implementation, 5-8 to 5-9
functions not available, 5-9
incompatibilities with

LabWindows/CVI, 5-10 to 5-11
replacement functions (table), 5-9
calling Sun C library from source
code, 5-1
restrictions, 5-1
LabWindows/CVI implementation of
printf and scanf, 5-4

non-ANSI behavior, 5-4

static and shared versions, 5-3

using low-level I/O functions, 1-5

LabWindows/CVI Programmer Reference Manual

1-12

Sun Solaris
distribution of standalone executables
LabWindows/CVI Run-Time Engine
files, 7-12
Solaris 1, 7-4to 7-5
Solaris 1 patches required, 7-5 to 7-6
Solaris 2, 7-3to 7-4
incompatibilities with
LabWindows/CVI, 5-11
support modules for glue code, 4-9
Symantec C/C++
creating object and library files, 3-19
default directives, 3-16
Symantec or Borland 32-bit compiled
modules under Windows, 4-2 to 4-3

T

Target command, Build menu, 3-20,
3-21, 3-25

TCP Library, 9-6

technical support, B-1 to B-2

telephone and fax support numbers, B-2

Type Library resource for Visual Basic,
3-24 10 3-25

typedefs, duplicate, 1-4

U

.uir files. Seeuser interface resource
(.uir) files.

unions, 1-16

UNIX C library. SeeSun C library.

UNIX compiler/linker issues, 5-1to 5-11
asynchronous signal handling, 5-7 to 5-8
calling Sun C library functions, 5-1

restrictions, 5-1
creating executables, 5-3 to 5-5
compatible external compilers, 5-3
InitCVIRTE called by main function,
5-4 to 5-5

© MNational Instruments Corporation

non-ANSI behavior of Sun Solaris 1
ANSI C library, 5-4
printf and scanf functions under
LabWindows/CVI, 5-4
run state change callbacks not
available, 5-5
static and shared versions of ANSI C
and Sun libraries, 5-3 to 5-4
externally compiled modules, 5-6 to 5-7
compiling, 5-6 to 5-7
restrictions, 5-6
incompatibilities, 5-10 to 5-11
between LabWindows/CVI and
ANSI C, 5-10 to 5-11
between LabWindows/CVI and Sun
Solaris, 5-11
locking process segments in memory
using plock(), 5-7
shared libraries, 5-2
LabWindows/CVI Run-time Engine
as shared library, 5-2
using dlopen, 5-2
Solaris 1 ANSI C Library
implementation, 5-8 to 5-9
functions not found in Sun Solaris 1
libc, 5-9
replacement functions (table), 5-9
UNIX operating system
configuration options for Run-time
Engine, 7-7
distribution of standalone executables,
7-2t0 7-5
minimum system requirements, 7-5
Solaris 1, 7-4to 7-5
Solaris 2, 7-3to 7-4
Unload command, Instruments menu, 2-3
UnRegisterWinMsgCallback function, 4-21
useDefaultTimer option, 7-7
user interfaceSeegraphical user
interface (GUI).
user interface eventSeeevents.

© National Instruments Corporation 1-13

Index

User Interface Library, 9-3
user interface resource (.uir) files
accessing from running standalone
executables, 7-12
multiplatform application
considerations, 6-3
required for running standalone
executables, 7-9
resolving callback references from,
3-10to 3-12
linking to callback functions not
exported from DLL, 3-11to 3-12
user librariesSee alsdibraries.
installing, 2-3
similarity with instrument driver, 2-3
using loadable compiled modules, 2-3
user protection
dynamic memory, 1-15
library functions, 1-16
pointer casting, 1-14
stack size, 1-16 to 1-17
unions, 1-16
user protection errors
disabling, 1-12to 1-14
for individual pointer, 1-12 to 1-13
library errors
for functions, 1-13to 1-14
at run-time, 1-12
at run-time, 1-12
error category, 1-8
general protection errors, 1-11
library protection errors, 1-11 to 1-12
memory corruption (fatal), 1-11
memory deallocation (non-fatal), 1-11
pointer arithmetic (non-fatal), 1-8 to 1-9
pointer assignment (non-fatal), 1-9
pointer casting (non-fatal), 1-10
pointer comparison (non-fatal), 1-10
pointer dereference errors (fatal),
1-9to 1-10

LabWindows/CVI Programmer Reference Manual

Index

pointer subtraction (non-fatal), 1-10
severity level, 1-8
Utility Library, 9-7

)

va_arg (ap, type), 1-2

VISA Library, 9-5

Visual Basic.SeeMicrosoft Visual Basic.
Visual C/C++.SeeMicrosoft Visual C/C++.
VXI Library, 9-4

W

Watcom C/C++
32-bit compiled modules under
Windows 3.1, 4-1 to 4-2
creating object and library files, 3-19
default directives, 3-16
pull-in references, 3-17
stack based calling convention, 3-15
Watcom WEMU387.386 coprocessor
emulation software, 7-2
Windows 3.1
compiler/linker issues
16-bit Windows DLLsSeeéWindows
16-bit DLLs.
32-bit Borland or Symantec
compiled modules, 4-2 to 4-3
32-bit Watcom compiled modules,
4-1t04-2
modules compiled by
LabWindows/CVI, 4-1
cvirtx option for configuring Run-time
Engine, 7-6
distributing standalone executables
math coprocessor software
emulation, 7-2
minimum system requirements, 7-2
structure packing pragmas, 1-4 to 1-5

LabWindows/CVI Programmer Reference Manual 1-14

Windows 16-bit DLLs
creating
with Borland C++, 4-22
with Microsoft Visual C++ 1.5,
4-21to 4-22
DLLs unable to use glue code generated
at load time, 4-8 to 4-20
arrays bigger than 64 K, 4-9 to 4-11
buffer retained after function returns
(asynchronous function),
4-11t0 4-12
direct callbacks into 32-bit code,
4-12 to 4-15
functions exported by ordinal value
only, 4-20
loading, 4-8 to 4-9
pointer that points to other pointers,
4-18 to 4-20
returning pointers, 4-15 to 4-17
rules for include file, 4-9
support module required outside of
DLL, 4-9
DLLs using glue code generated at load
time, 4-8
fixing linker error (note), 4-7
helpful LabWindows/CVI options, 4-4
not supported in Windows 95/NT, 3-2
overview, 4-3 to 4-4
requirements, 4-7
rules and restrictions, 4-5 to 4-7
search precedence, 4-23 to 4-24
for standalone executables
definition, 7-9
loading with LoadExternalModule,
7-17 to 7-18
rules for using, 7-13 to 7-14
unusable in specific situations, 4-8

© MNational Instruments Corporation

Windows 32-bit DLLs
compatibility with external compilers
bit fields, 3-6
choosing compatible compiler, 3-5
enum sizes, 3-7
long doubles, 3-7
returning floats and doubles, 3-7
returning structures, 3-7
structure packing, 3-6
creating in LabWindows/CVI,
3-20to 3-25
automatic inclusion of Type Library
resource for Visual Basic,
3-24 10 3-25
calling conventions for exported
functions, 3-21 to 3-22
customizing import library,
3-20to 3-21
exporting DLL functions and
variables, 3-22
export qualifier method,
3-22to 3-23
include file method, 3-22
marking imported symbols in include
file distributed with DLL,
3-231t0 3-24
preparing source code, 3-21 to 3-24
recommendations, 3-24
DLL import library compatibility with
external compilers, 3-5
loading, 3-1to 3-4
16-bit DLLs not supported, 3-2
default unloading/reloading
policy, 3-4
DLL path (.pth) files not
supported, 3-2
DlIMain function, 3-3
DLLs for instrument drivers and user
libraries, 3-2
generating import library, 3-4
link errors when using DLL import
libraries, 3-2

© National Instruments Corporation

I-15

Index

releasing resources when DLL
unloads, 3-3to 3-4
run state change callbacks in DLLs,
3-2t0 3-3
using LoadExternalModule
function, 3-2
for standalone executables
distributing, 7-9
loading with
LoadExternalModule, 7-17
location, 7-10
rules for using, 7-13
using run state change callbacks,
2-6to 2-7
Windows 95/NT
32-bit DLLS. SeeWindows 32-bit DLLs.
calling convention qualifiers in function
declarations, 1-2 to 1-3
calling SDK functions in
LabWindows/CVI, 3-26 to 3-28
automatic loading of SDK import
libraries, 3-27 to 3-28
creating multiple threads using
Windows SDK functions, 3-27
SDK include files, 3-26 to 3-27
user interface capabilities, 3-27
compatibility with external compilers,
3-41t0 3-8
choosing a compiler, 3-5
DLLs, 3-5
external compiler versions
supported, 3-8
LabWindows/CVI differences,
3-71t0 3-8
object files, library files, and DLL
import libraries, 3-5
required preprocessor definitions, 3-8
compiler/linker issues
calling SDK functions, 3-26 to 3-28
compatibility with external
compilers, 3-4 to 3-8
creating DLLs, 3-20 to 3-25

LabWindows/CVI Programmer Reference Manual

LabWindows/CVI Programmer Reference Manual

Index

creating executables, 3-20
creating object and library files in
external compilers, 3-18 to 3-19
creating object files, 3-26
creating static libraries, 3-25
hardware interrupts, 3-29
LabWindows/CVI libraries in
external compilers, 3-9 to 3-15
loading 32-bit DLLs, 3-1to 3-4
multithreading, 3-8
object and library files in external
compilers, 3-15to 3-17
setting up include paths, 3-28 to 3-29
creating object and library files in external
compiler, 3-18 to 3-19
Borland C/C++, 3-18
Microsoft Visual C/C++, 3-18
Symantec C/C++, 3-19
Watcom C/C++, 3-19
creating object files in
LabWindows/CVI, 3-26
creating static libraries in
LabWindows/CVI, 3-25
cvidir option for configuring Run-time
Engine, 7-7
distributing standalone executables
coprocessor not required, 7-2
creating in LabWindows/CVI, 3-20
location of files, 7-10 to 7-11
low-level support driver, 7-10 to 7-11
message, resource, and font
files, 7-11
minimum system requirements, 7-1
National Instruments hardware 1/0
libraries, 7-11
Run-time Library DLLs, 7-10
system requirements, 7-1to 7-2
hardware interrupts, 3-29

I-16

LabWindows/CVI libraries in external
compilers, 3-9 to 3-15
calling InitCVIRTE and
CloseCVIRTE, 3-14 to 3-15
include files, 3-10
resolving callback references from
.uir files, 3-10 to 3-12
resolving references from modules
loaded at run-time, 3-12 to 3-13
run state change callbacks
unavailable, 3-13 to 3-14
standard input/output window, 3-10
Watcom stack based calling
convention, 3-15
multithreading and LabWindows/CVI
libraries, 3-8
program entry points, 1-5
setting up include paths for
LabWindows/CVI, ANSI C, and SDK
libraries, 3-28 to 3-29
structure packing pragmas, 1-4 to 1-5
using object and library files in external
compiler, 3-15 to 3-17
Borland C++ Builder, 3-17
Borland incremental linker, 3-17
Borland statioversusdynamic C
libraries, 3-17
default library directives,
3-15t0 3-16
Borland C/C++, 3-16
Microsoft Visual C/C++, 3-16
Symantec C/C++, 3-16
Watcom C/C++, 3-16
Watcom pull-in references, 3-17

Windows messages passed from DLLs, 4-21

GetCVIWindowHandle function, 4-21
RegisterWinMsgCallback function, 4-21
UnRegisterWinMsgCallback

function, 4-21

© MNational Instruments Corporation

Index

Windows SDK functions, 3-26 to 3-28
automatic loading of SDK import
libraries, 3-27 to 3-28
calling in LabWindows/CVI, 3-26 to 3-28
creating multiple threads, 3-27
include files, 3-26 to 3-27

setting up include paths for SDK libraries,
3-281t0 3-29
user interface capabilities, 3-27

X

X Property Library, status reporting by, 9-6

© National Instruments Corporation 1-17 LabWindows/CVI Programmer Reference Manual

	LabWindows/CVI Programmer Reference Manual
	Support
	Internet Support
	Bulletin Board Support
	Fax-on-Demand Support
	Telephone Support (USA)
	International Offices
	National Instruments Corporate Headquarters

	Important Information
	Warranty
	Copyright
	Trademarks
	WARNING REGARDING MEDICAL AND CLINICAL USE OF NATI...

	Contents
	About This Manual
	Organization of This Manual
	Conventions Used in This Manual
	Related Documentation
	Customer Communication

	Chapter 1 LabWindows/CVI Compiler
	Overview
	LabWindows/CVI Compiler Specifics
	Compiler Limits
	Compiler Options
	Compiler Defines

	C Language Non-Conformance
	C Language Extensions
	Keywords That Are Not ANSI C Standard
	Calling Conventions (Windows 95/NT Only)
	Import and Export Qualifiers
	C++ Comment Markers
	Duplicate Typedefs
	Structure Packing Pragma (Windows 3.1 and Windows ...
	Program Entry Points (Windows 95/NT Only)

	C Library Issues
	Using the Low-Level I/O Functions

	C Data Types and 32-Bit Compiler Issues
	Data Types
	Converting 16-Bit Source Code to 32-Bit Source Cod...

	Debugging Levels
	User Protection
	Array Indexing and Pointer Protection Errors
	Pointer Arithmetic (Non-Fatal)
	Pointer Assignment (Non-Fatal)
	Pointer Dereference Errors (Fatal)
	Pointer Comparison (Non-Fatal)
	Pointer Subtraction (Non-Fatal)
	Pointer Casting (Non-Fatal)

	Dynamic Memory Protection Errors
	Memory Deallocation (Non-Fatal)
	Memory Corruption (Fatal)

	General Protection Errors
	Library Protection Errors
	Disabling User Protection
	Disabling Protection Errors at Run-Time
	Disabling Library Errors at Run-Time
	Disabling Protection for Individual Pointer
	Disabling Library Protection Errors for Functions

	Details of User Protection
	Pointer Casting
	Dynamic Memory
	Library Functions
	Unions

	Stack Size
	Include Paths
	Include Path Search Precedence

	Chapter 2 Using Loadable Compiled Modules
	About Loadable Compiled Modules
	Advantages and Disadvantages of Using Loadable Com...
	Using a Loadable Compiled Module as an Instrument ...
	Using a Loadable Compiled Module as a User Library...
	Using a Loadable Compiled Module in the Project Li...
	Using a Loadable Compiled Module as an External Mo...
	Notification of Changes in Run State
	Example 1
	Example 2

	Using Run State Change Callbacks in a DLL
	Compiled Modules that Contain Asynchronous Callbac...

	Chapter 3 Windows 95/NT Compiler/Linker Issues
	Loading 32-Bit DLLs under Windows�95/NT
	DLLs for Instrument Drivers and User Libraries
	Using The LoadExternalModule Function
	Link Errors when Using DLL Import Libraries
	DLL Path (.pth) Files Not Supported
	16-Bit DLLs Not Supported
	Run State Change Callbacks in DLLs
	DllMain
	Releasing Resources when a DLL Unloads
	Generating an Import Library
	Default Unloading/Reloading Policy

	Compatibility with External Compilers
	Choosing Your Compatible Compiler
	Object Files, Library Files, and DLL Import Librar...
	Compatibility Issues in DLLs
	Structure Packing
	Bit Fields
	Returning Floats and Doubles
	Returning Structures
	Enum Sizes
	Long Doubles

	Differences between LabWindows/CVI and the Externa...
	External Compiler Versions Supported
	Required Preprocessor Definitions

	Multithreading and the LabWindows/CVI Libraries
	Using LabWindows/CVI Libraries in External Compile...
	Include Files for the ANSI C Library and the LabWi...
	Standard Input/Output Window
	Resolving Callback References from .UIR Files
	Linking to Callback Functions Not Exported from a ...

	Resolving References from Modules Loaded at Run-Ti...
	Resolving References to the LabWindows/CVI Run-Tim...
	Resolving References to Symbols Not in Run-Time En...
	Resolving Run-Time Module References to Symbols No...

	Run State Change Callbacks Are Not Available in Ex...
	Calling InitCVIRTE and CloseCVIRTE
	Watcom Stack Based Calling Convention

	Using Object and Library Files in External Compile...
	Default Library Directives
	Microsoft Visual C/C++
	Borland C/C++
	Watcom C/C++
	Symantec C/C++

	Borland Static versus Dynamic C Libraries
	Borland Incremental Linker
	Borland C++ Builder
	Watcom Pull-in References

	Creating Object and Library Files in External Comp...
	Microsoft Visual C/C++
	Borland C/C++
	Watcom C/C++
	Symantec C/C++

	Creating Executables in LabWindows/CVI
	Creating DLLs in LabWindows/CVI
	Customizing an Import Library
	Preparing Source Code for Use in a DLL
	Calling Convention for Exported Functions
	Exporting DLL Functions and Variables
	Include File Method
	Export Qualifier Method
	Marking Imported Symbols in Include File Distribut...
	Recommendations

	Automatic Inclusion of Type Library Resource for V...

	Creating Static Libraries in LabWindows/CVI
	Creating Object Files in LabWindows/CVI
	Calling Windows SDK Functions in LabWindows/CVI
	Windows SDK Include Files
	Using Windows SDK Functions for User Interface Cap...
	Using Windows SDK Functions to Create Multiple Thr...
	Automatic Loading of SDK Import Libraries

	Setting Up Include Paths for LabWindows/CVI, ANSI ...
	Compiling in LabWindows/CVI for Linking in LabWind...
	Compiling in LabWindows/CVI for Linking in an Exte...
	Compiling in an External Compiler for Linking in a...
	Compiling in an External Compiler for Linking in L...

	Handling Hardware Interrupts under Windows�95/NT

	Chapter 4 Windows 3.1 Compiler/Linker Issues
	Using Modules Compiled by LabWindows/CVI
	Using 32-Bit Watcom Compiled Modules under�Windows...
	Using 32-Bit Borland or Symantec Compiled Modules ...
	16-Bit Windows DLLs
	Helpful LabWindows/CVI Options for Working with DL...
	DLL Rules and Restrictions
	DLL Glue Code
	DLLs That Can Use Glue Code Generated at Load Time...
	DLLs That Cannot Use Glue Code Generated at Load T...
	Loading a DLL That Cannot Use Glue Code Generated ...

	Recognizing Windows Messages Passed from a DLL
	Creating 16-bit DLLs with Microsoft Visual C++ 1.5...
	Creating 16-bit DLLs with Borland C++
	DLL Search Precedence

	Chapter 5 UNIX Compiler/Linker Issues
	Calling Sun C Library Functions
	Restrictions on Calling Sun C Library Functions

	Using Shared Libraries in LabWindows/CVI
	Using dlopen

	The LabWindows/CVI Run-Time Engine as a Shared Lib...
	Creating Executables that Use the LabWindows/CVI L...
	Compatible External Compilers
	Static and Shared Versions of the ANSI C and Other...
	Non-ANSI Behavior of Sun Solaris 1 ANSI C Library
	LabWindows/CVI Implements printf and scanf
	Main Function Must Call InitCVIRTE
	Run State Change Callbacks Are Not Available in Ex...

	Using Externally Compiled Modules
	Restrictions on Externally Compiled Modules
	Compiling Modules With External Compilers

	Locking Process Segments into Memory Using plock()...
	UNIX Asynchronous Signal Handling
	Solaris 1 ANSI C Library Implementation
	Replacement Functions
	Additional Functions Not Found in Sun Solaris 1 li...

	Incompatibilities among LabWindows/CVI, Sun Solari...
	Between LabWindows/CVI and ANSI C
	Between LabWindows/CVI and Sun Solaris

	Chapter 6 Building Multiplatform Applications
	Multiplatform Programming Guidelines
	Library Issues
	Externally Compiled Modules

	Multiplatform User Interface Guidelines

	Chapter 7 Creating and Distributing Standalone Executables a...
	Introduction to the Run-Time Engine
	Distributing Standalone Executables under Windows
	Minimum System Requirements for Windows 95/NT
	No Math Coprocessor Required for Windows 95/NT
	Minimum System Requirements for Windows 3.1
	Math Coprocessor Software Emulation for Windows 3....

	Distributing Standalone Executables under UNIX
	Distributing Standalone Executables under Solaris ...
	Distributing Standalone Executables under Solaris ...
	Minimum System Requirements for UNIX

	Translating the Message File

	Configuring the Run-Time Engine
	Solaris 1 Patches Required for Running Standalone ...
	Configuration Option Descriptions
	cvirtx (Windows 3.1 Only)
	cvidir (Windows Only)
	useDefaultTimer (Windows Only)
	DSTRules
	UNIX Options

	Necessary Files for Running Executable Programs
	Necessary Files for Using DLLs Created in�Windows�...
	Location of Files on the Target Machine for Runnin...
	LabWindows/CVI Run-Time Engine under Windows 95/NT...
	Run-Time Library DLLs
	Low-Level Support Driver
	Message, Resource, and Font Files
	National Instruments Hardware I/O Libraries

	LabWindows/CVI Run-Time Engine under Windows 3.1
	LabWindows/CVI Run-Time Engine under Sun Solaris
	Rules for Accessing UIR, Image, and Panel State Fi...
	Rules for Using DLL Files under Windows 95/NT
	Rules for Using DLL Files under Windows 3.1
	Rules for Loading Files Using LoadExternalModule
	Forcing Modules that External Modules Refer to int...
	Using LoadExternalModule on Files in the Project
	Using LoadExternalModule on Library and Object Fil...
	Using LoadExternalModule on DLL Files under Window...
	Using LoadExternalModule on DLL and Path Files und...
	Using LoadExternalModule on Source Files (.c)

	Rules for Accessing Other Files
	Error Checking in Your Standalone Executable or DL...

	Chapter 8 Distributing Libraries and Function Panels
	How to Distribute Libraries
	Adding Libraries to User’s Library Menu
	Specifying Library Dependencies

	Chapter 9 Checking for Errors in LabWindows/CVI
	Error Checking
	Status Reporting by LabWindows/CVI Libraries and�I...
	User Interface Library
	Analysis/Advanced Analysis Libraries
	Easy I/O for DAQ Library
	Data Acquisition Library
	VXI Library
	GPIB/GPIB 488.2 Library
	RS-232 Library
	VISA Library
	IVI Library
	TCP Library
	DDE Library
	ActiveX Automation Library
	X Property Library
	Formatting and I/O Library
	Utility Library
	ANSI C Library
	LabWindows/CVI Instrument Drivers

	Appendix A Errors and Warnings
	Appendix B Customer Communication
	Electronic Services
	Telephone and Fax Support
	Technical Support Form
	LabWindows/CVI Hardware and Software Configuration...
	National Instruments Products
	Other Products

	Documentation Comment Form

	Glossary
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	O
	P
	R
	S
	T
	U
	V
	W

	Index
	Special Characters/Numbers
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

	Figures
	Figure 7�1. Files Necessary to Run a LabWindows/CV...

	Tables
	Table 1�1. LabWindows/CVI Compiler Limits�
	Table 1�2. LabWindows/CVI Allowable Data Types
	Table 1�3. Stack Size Ranges for LabWindows/CVI
	Table 7�1. LabWindows/CVI Run-Time Engine Files
	Table 7�2. Windows NT Registry Entry Values for th...
	Table 7�3. Pathnames and Targets of Links
	Table A�1. Error Messages (Continued)

